Skip to main content

Banksformer: A Deep Generative Model for Synthetic Transaction Sequences

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2022)

Abstract

Synthetic data are generated data that closely model real- world measurements, and can be a valuable substitute for real data in domains where it is costly to obtain real data or privacy concerns exist. Synthetic data has traditionally been generated using computational simulations, but deep generative models (DGMs) are increasingly used to create high-quality synthetic data. In this work, we tackle the problem of generating synthetic, multivariate sequences of banking transactions.

A key challenge in modeling transactional sequences with DGMs is that transactions occur at irregular intervals and may depend on timestamp-based features, such as the time of day or day of the week. Relationships between date-based features are often poorly represented in data generated using state-of-the-art sequence DGMs, such as DoppelGANger [17] and TimeGAN [31]. To remedy this, we propose a novel DGM, called Banksformer (Code available at github.com/BigTuna08/Banksformer_ecml_2022), which is able to emulate date-based patterns found in transactional data significantly better than other DGMs. We demonstrate Banksformers’ ability to generate high-quality synthetic sequences of banking transactions by conducting a multi-faceted evaluation that compares synthetic data generated by Banksformer to data from other comparable DGMs, across two datasets of banking transactions.

We wish to acknowledge the support of Mitacs through Accelerate funding for applied research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://data.world/lpetrocelli/czech-financial-dataset-real-anonymized-transactions.

  2. 2.

    https://pub.towardsai.net/generating-synthetic-sequential-data-using-gans-a1d67a7752ac; this blog post explores using DG to create synthetic data.

References

  1. Alaa, A.M., van Breugel, B., Saveliev, E., van der Schaar, M.: How faithful is your synthetic data? sample-level metrics for evaluating and auditing generative models. CoRR abs/2102.08921 (2021)

    Google Scholar 

  2. Assefa, S., Dervovic, D., Mahfouz, M., Balch, T., Reddy, P., Veloso, M.: Generating Synthetic Data in Finance: Opportunities, Challenges and Pitfalls. InfoSciRN: Data Protection (Topic) (2020)

    Google Scholar 

  3. Brown, T., Mann, B., Ryder, N., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020)

    Google Scholar 

  4. Byrd, D., Hybinette, M., Balch, T.H.: ABIDES: towards high-fidelity market simulation for AI research. ArXiv abs/1904.12066 (2019)

    Google Scholar 

  5. Cont, R.: Empirical properties of asset returns: stylized facts and statistical issues. Quant. Finan. 1, 223–236 (2001)

    Google Scholar 

  6. Engel, J., Agrawal, K.K., Chen, S., Gulrajani, I., Donahue, C., Roberts, A.: Gansynth: adversarial neural audio synthesis. arXiv:1902.08710 (2019)

  7. Farsani, R.M., Pazouki, E.: A transformer self-attention model for time series forecasting. J. Electr. Comput. Eng. Innov. (JECEI) 9(1), 1–10 (2021)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative Adversarial Networks. ArXiv abs/1406.2661 (2014)

    Google Scholar 

  9. Jordon, J., Yoon, J., van der Schaar, M.: Measuring the quality of synthetic data for use in competitions. arXiv:1806.11345 (2018)

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. CoRR abs/1912.04958 (2019)

    Google Scholar 

  11. Koshiyama, A., Firoozye, N., Treleaven, P.: Generative adversarial networks for financial trading strategies fine-tuning and combination. Quant. Finan. 21(5), 797–813 (2021)

    Article  MathSciNet  Google Scholar 

  12. LeBaron, B.: Chapter 24 agent-based computational finance. In: Handbook of Computational Economics, vol. 2, pp. 1187–1233. Elsevier (2006)

    Google Scholar 

  13. Li, J., Wang, X., Lin, Y., Sinha, A., Wellman, M.: Generating realistic stock market order streams. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, no. 01, pp. 727–734 (2020)

    Google Scholar 

  14. Li, S., Jin, X., Xuan, Y., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  15. Li, Z., Xia, T., Lou, X., et al.: Adversarial discrete sequence generation without explicit neural networks as discriminators. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3089–3098. PMLR (2019)

    Google Scholar 

  16. Lim, B., Arık, S., Loeff, N., Pfister, T.: Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. Int. J. Forecast. 37(4), 1748–1764 (2021)

    Article  Google Scholar 

  17. Lin, Z., Jain, A., Wang, C., Fanti, G., Sekar, V.: Using GANs for sharing networked time series data: challenges, initial promise, and open questions. In: Proceedings of the ACM Internet Measurement Conference, IMC 2020, pp. 464–483. Association for Computing Machinery, New York (2020)

    Google Scholar 

  18. Liu, P.J., Saleh, M., Pot, E., et al.: Generating Wikipedia by Summarizing Long Sequences. ArXiv abs/1801.10198 (2018)

    Google Scholar 

  19. Lopez-Rojas, E.: Applying Simulation to the Problem of Detecting Financial Fraud. Ph.D. thesis, Blekinge Institute of Technology (2016)

    Google Scholar 

  20. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  21. Panayi, E., Harman, M., Wetherilt, A.: Agent-based modelling of stock markets using existing order book data. In: MABS (2012)

    Google Scholar 

  22. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318 (2002)

    Google Scholar 

  23. Berka, P., Sochorova, M.: PKKD 1999 Discovery Challenge (1999). Accessed 01 Apr 2022

    Google Scholar 

  24. Silva, B.D., Shi, S.S.: Towards Improved Generalization in Financial Markets with Synthetic Data Generation (2019)

    Google Scholar 

  25. Takahashi, S., Chen, Y., Tanaka-Ishii, K.: Modeling financial time-series with generative adversarial networks. Physica A: Stat. Mech. Appl. 527, 121261 (2019)

    Google Scholar 

  26. Theis, L., Oord, A.V.D., Bethge, M.: A note on the evaluation of generative models. arXiv preprint arXiv:1511.01844 (2015)

  27. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 6000–6010. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  28. Wiese, M., Bai, L., Wood, B., Buehler, H.: Deep hedging: learning to simulate equity option markets. arXiv preprint arXiv:1911.01700 (2019)

  29. Wiese, M., Knobloch, R., Korn, R., Kretschmer, P.: Quant GANs: deep generation of financial time series. Quant. Finan. 20(9), 1419–1440 (2020)

    Article  MathSciNet  Google Scholar 

  30. Wu, N., Green, B., Ben, X., O’Banion, S.: Deep transformer models for time series forecasting: the influenza prevalence case. CoRR abs/2001.08317 (2020)

    Google Scholar 

  31. Yoon, J., Jarrett, D., van der Schaar, M.: Time-series generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  32. Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, AAAI 2017, pp. 2852–2858. AAAI Press (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Nickerson .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 301 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nickerson, K. et al. (2023). Banksformer: A Deep Generative Model for Synthetic Transaction Sequences. In: Amini, MR., Canu, S., Fischer, A., Guns, T., Kralj Novak, P., Tsoumakas, G. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2022. Lecture Notes in Computer Science(), vol 13718. Springer, Cham. https://doi.org/10.1007/978-3-031-26422-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26422-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26421-4

  • Online ISBN: 978-3-031-26422-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics