Abstract
Face image inpainting has great value in the fields of computer vision and digital image processing. In this paper, we propose a face image inpainting method based on autoencoder and Generative Adversarial Network (GAN). The neural network for image inpainting consists of two parts, a generator and a discriminator. The autoencoder is used twice in the discriminator part, after the final inpainted image is generated by local discriminator and global discriminator. The final loss function is obtained by combining Generative Adversarial Loss and Mean Squared Error (MSE) Loss [20]. We improve and implement an image inpainting model with two evaluation metrics, namely, Peak Signal-to-noise Ratio (PSNR) and Structural similarity index measure (SSIM) [27], respectively. The proposed model for image inpainting is much more suitable for face image inpainting.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bansal, M., Yan, W.Q., Kankanhalli, M.S.: Dynamic watermarking of images. In: International Conference on Information, Communications and Signal Processing and the Fourth Pacific Rim Conference on Multimedia, vol. 2, pp. 965–969. IEEE (2003)
Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424 (2000)
Chen, Y., et al.: The improved image inpainting algorithm via encoder and similarity constraint. Vis. Comput. 37(7), 1691–1705 (2021)
Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)
Cui, W., Yan, W.Q.: A scheme for face recognition in complex environments. Int. J. Digit. Crime Forensics (IJDCF) 8(1), 26–36 (2016)
Ding, W., Yan, W.Q., Qi, D.X.: Digital image scrambling and digital watermarking technology based on Conway’s game. J. North China Univ. Technol. 12(1), 1–5 (2000)
Gao, X.: A method for face image inpainting based on generative adversarial networks (Masters thesis). Auckland University of Technology, New Zealand (2022)
Gao, X., Nguyen, M., Yan, W.Q.: Face image inpainting based on generative adversarial network. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2021)
Givkashi, M.H., Hadipour, M., PariZanganeh, A., Nabizadeh, Z., Karimi, N., Samavi, S.: Image inpainting using AutoEncoder and guided selection of predicted pixels. arXiv preprint arXiv:2112.09262 (2021)
Han, C., Wang, J.: Face image inpainting with evolutionary generators. IEEE Signal Process. Lett. 28, 190–193 (2021)
Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. ACM Trans. Graph. (ToG) 36(4), 1–14 (2017)
Le, H., Nguyen, M., Nguyen, Q., Nguyen, H., Yan, W.Q.: Automatic data generation for deep learning model training of image classification used for augmented reality on pre-school books. In: International Conference on Multimedia Analysis and Pattern Recognition (MAPR), pp. 1–5 (2020)
Liang, C., Lu, J., Yan, W.: Human action recognition from digital videos based on deep learning. In: ACM ICCCV 2022 (2022)
Liu, Z., Yan, W.Q., Yang, M.L.: Image denoising based on a CNN model. In: International Conference on Control, Automation and Robotics (ICCAR), pp. 389–393. IEEE (2018)
Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces attributes (CelebA) dataset. Retrieved August, 15(2018), 11 (2018)
Lu, J., Nguyen, M., Yan, W.Q.: Sign language recognition from digital videos using deep learning methods. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) ISGV 2021. CCIS, vol. 1386, pp. 108–118. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_9
Lu, J., Yan, W.Q., Nguyen, M.: Human behaviour recognition using deep learning. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2018)
Mehtab, S., Yan, W.Q.: Flexible neural network for fast and accurate road scene perception. Multimedia Tools Appl. 81(5), 7169–7181 (2022)
Nguyen, M., Yan, W.Q.: Temporal colour-coded facial-expression recognition using convolutional neural network. In: Paiva, S., et al. (eds.) Smart City 360\(^{\circ }\) 2021. LNICST, vol. 442, pp. 41–54. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06371-8_4
Pajot, A., de Bezenac, E., Gallinari, P.: Unsupervised adversarial image inpainting. arXiv preprint arXiv:1912.12164 (2019)
Qin, Z., Yan, W.Q.: Traffic-sign recognition using deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) ISGV 2021. CCIS, vol. 1386, pp. 13–25. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_2
Sara, U., Akter, M., Uddin, M.S.: Image quality assessment through FSIM, SSIM, MSE and PSNR- a comparative study. J. Comput. Commun. 7(3), 8–18 (2019)
Shen, D., Nguyen, M., Yan, W.Q.: Flame detection using deep learning. In: International Conference on Control, Automation and Robotics (ICCAR), pp. 389–393. IEEE (2018)
Shen, Y., Yan, W.Q.: Blind spot monitoring using deep learning. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–5. IEEE (2018)
Siavelis, P.-R., Lamprinou, N., Psarakis, E.Z.: An improved GAN semantic image inpainting. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2020. LNCS, vol. 12002, pp. 443–454. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40605-9_38
Siddavatam, I., Dalvi, A., Pawade, D., Bhatt, A., Vartak, J., Gupta, A.: A novel approach for video inpainting using autoencoders. Int. J. Inf. Eng. Electron. Bus. 13(6), 48–61 (2021)
Tiefenbacher, P., Bogischef, V., Merget, D., Rigoll, G.: Subjective and objective evaluation of image inpainting quality. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 447–451. IEEE (2015)
Velavan, T.P., Meyer, C.G.: The COVID-19 epidemic. Trop. Med. Int. Health 25(3), 278 (2020)
Wang, H., Yan, W.Q.: Face detection and recognition from distance based on deep learning. In: Aiding Forensic Investigation Through Deep Learning and Machine Learning Frameworks, pp. 144–160. IGI Global (2022)
Wang, L., Yan, W.Q.: Tree leaves detection based on deep learning. In: Nguyen, M., Yan, W.Q., Ho, H. (eds.) ISGV 2021. CCIS, vol. 1386, pp. 26–38. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72073-5_3
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8695–8704 (2020)
Wang, X., Zhang, J., Yan, W.Q.: Gait recognition using multichannel convolution neural networks. Neural Comput. Appl. 32(18), 14275–14285 (2020)
Wang, Y., Yan, W.Q.: Colorizing grayscale CT images of human lungs using deep learning methods. Multimedia Tools Appl. 81, 37805–37819 (2022)
Wei, T., Li, Q., Liu, J., Zhang, P., Chen, Z.: 3D face image inpainting with generative adversarial nets. Math. Probl. Eng. 2020, 1–11 (2020)
Yan, W.Q.: Introduction to Intelligent Surveillance. TCS, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10713-0
Yan, W.Q.: Computational Methods for Deep Learning: Theoretic Practice and Applications. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-61081-4
Yan, W.Q., Kankanhalli, M.S.: Erasing video logos based on image inpainting. In: IEEE International Conference on Multimedia and Expo, vol. 2, pp. 521–524. IEEE (2002)
Yan, W.Q., Kankanhalli, M.S.: Face search in encrypted domain. In: Bräunl, T., McCane, B., Rivera, M., Yu, X. (eds.) PSIVT 2015. LNCS, vol. 9431, pp. 775–790. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29451-3_61
Yan, W., Kieran, D.F., Rafatirad, S., Jain, R.: A comprehensive study of visual event computing. Multimedia Tools Appl. 55(3), 443–481 (2011)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: IEEE/CVF International Conference on Computer Vision, pp. 4471–4480 (2019)
Yu, Z., Yan, W.Q.: Human action recognition using deep learning methods. In: International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2020)
Zeng, Y., Fu, J., Chao, H., Guo, B.: Learning pyramid-context encoder network for high-quality image inpainting. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1486–1494 (2019)
Zhang, H., Li, T.: Semantic face image inpainting based on generative adversarial network. In: Youth Academic Annual Conference of Chinese Association of Automation (YAC), pp. 530–535. IEEE (2020)
Zhang, Q., Yan, W.Q.: Currency detection and recognition based on deep learning. In: IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2018)
Zhang, Q., Yan, W.Q., Kankanhalli, M.: Overview of currency recognition using deep learning. J. Banking Financ. Technol 3(1), 59–69 (2019)
Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data Eng. 34, 249–270 (2020)
Zhao, G., Liu, J., Jiang, J., Wang, W.: A deep cascade of neural networks for image inpainting, deblurring and denoising. Multimedia Tools Appl. 77(22), 29589–29604 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, X., Nguyen, M., Yan, W.Q. (2023). A Method for Face Image Inpainting Based on Autoencoder and Generative Adversarial Network. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_3
Download citation
DOI: https://doi.org/10.1007/978-3-031-26431-3_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26430-6
Online ISBN: 978-3-031-26431-3
eBook Packages: Computer ScienceComputer Science (R0)