Skip to main content

Event-Based Visual Sensing for Human Motion Detection and Classification at Various Distances

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2022)

Abstract

In Human Research and Rescue scenarios, it is useful to be able to distinguish persons in distress from rescuers. Assuming people requiring help would wave to attract attention, human motion is thus a significant cue to identify person in needs. Therefore, in this paper, we aim at detecting and classifying human motion at different depths with low resolution. The task is fulfilled thanks to an event-based sensor and a Spiking Neural Network (SNN). The event-based sensor has been chosen as a suitable device to register motion specifically. While SNN is appropriate to process the event-based data, it is also a suitable algorithm to be implemented in low-power neuromorphic device, allowing for a longer operating time. In this study, we gather new data with similar classes to the IBM DVS Gesture dataset at various distances. We show we can achieve an accuracy up to 91.5% on a validation set obtained at different depths and lighting conditions from the training set. We also show that having an Region of Interest detection leads to better accuracy compare to a full frame model on untrained distances.

This research was supported by Programmatic grant no. A1687b0033 from the Singapore governments Research, Innovation and Enterprise 2020 plan (Advanced Manufacturing and Engineering domain).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acharya, J., et al.: EBBIOT: a low-complexity tracking algorithm for surveillance in IoVT using stationary neuromorphic vision sensors. In: 2019 32nd IEEE International System-on-Chip Conference (SOCC), pp. 318–323 (2019). https://doi.org/10.1109/SOCC46988.2019.1570553690

  2. Agarwal, S., Hervas-Martin, E., Byrne, J., Dunne, A., Luis Espinosa-Aranda, J., Rijlaarsdam, D.: An evaluation of low-cost vision processors for efficient star identification. Sensors 20(21), 6250 (2020). https://doi.org/10.3390/s20216250

    Article  Google Scholar 

  3. Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mw 1 million neuron programmable neurosynaptic chip. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396

    Article  Google Scholar 

  4. Amir, A., et al.: A low power, fully event-based gesture recognition system. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  5. Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., Andreopoulos, Y.: Graph-based object classification for neuromorphic vision sensing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  6. Blouw, P., Choo, X., Hunsberger, E., Eliasmith, C.: Benchmarking keyword spotting efficiency on neuromorphic hardware. In: Proceedings of the 7th Annual Neuro-Inspired Computational Elements Workshop. NICE 2019, Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3320288.3320304

  7. Calabrese, E., et al.: DHP19: dynamic vision sensor 3D human pose dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2019)

    Google Scholar 

  8. Ceolini, E., et al.: Hand-gesture recognition based on EMG and event-based camera sensor fusion: a benchmark in neuromorphic computing. Frontiers Neurosci. 14, 637 (2020). https://doi.org/10.3389/fnins.2020.00637

    Article  Google Scholar 

  9. Choi, W., Pantofaru, C., Savarese, S.: A general framework for tracking multiple people from a moving camera. IEEE Trans. Pattern Anal. Mach. Intell. 35(7), 1577–1591 (2013). https://doi.org/10.1109/TPAMI.2012.248

    Article  Google Scholar 

  10. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38(1), 82–99 (2018). https://doi.org/10.1109/MM.2018.112130359

    Article  Google Scholar 

  11. Dozat, T.: Incorporating Nesterov momentum into Adam. In: ICLR Workshop (2016)

    Google Scholar 

  12. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231. KDD 1996, AAAI Press (1996)

    Google Scholar 

  13. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2022). https://doi.org/10.1109/TPAMI.2020.3008413

    Article  Google Scholar 

  14. Gerstner, W.: Chapter 12 a framework for spiking neuron models: the spike response model. In: Moss, F., Gielen, S. (eds.) Neuro-Informatics and Neural Modelling, Handbook of Biological Physics, vol. 4, pp. 469–516. North-Holland (2001). https://doi.org/10.1016/S1383-8121(01)80015-4

  15. Hinz, G., et al.: Online multi-object tracking-by-clustering for intelligent transportation system with neuromorphic vision sensor. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 142–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_11

    Chapter  Google Scholar 

  16. Kaiser, J., et al.: Embodied neuromorphic vision with continuous random backpropagation. In: 2020 8th IEEE RAS/EMBS International Conference for Biomedical Robotics and Biomechatronics (BioRob), pp. 1202–1209 (2020). https://doi.org/10.1109/BioRob49111.2020.9224330

  17. Lan, W., Dang, J., Wang, Y., Wang, S.: Pedestrian detection based on yolo network model. In: 2018 IEEE International Conference on Mechatronics and Automation (ICMA), pp. 1547–1551 (2018). https://doi.org/10.1109/ICMA.2018.8484698

  18. Lichtsteiner, P., Posch, C., Delbruck, T.: A 128\(\times \)128 120 db 15 \(\mu \)s latency asynchronous temporal contrast vision sensor. IEEE J. Solid-State Circ. 43(2), 566–576 (2008). https://doi.org/10.1109/JSSC.2007.914337

    Article  Google Scholar 

  19. Lin, Z., Davis, L.S.: Shape-based human detection and segmentation via hierarchical part-template matching. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 604–618 (2010). https://doi.org/10.1109/TPAMI.2009.204

    Article  Google Scholar 

  20. Liu, Y., et al.: Dynamic gesture recognition algorithm based on 3D convolutional neural network. Computational Intelligence and Neuroscience 2021(4828102) (2021). https://doi.org/10.1155/2021/4828102

  21. Lygouras, E., Santavas, N., Taitzoglou, A., Tarchanidis, K., Mitropoulos, A., Gasteratos, A.: Unsupervised human detection with an embedded vision system on a fully autonomous UAV for search and rescue operations. Sensors 19(16), 3542 (2019). https://doi.org/10.3390/s19163542

    Article  Google Scholar 

  22. Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9 (2018). https://doi.org/10.1109/IROS.2018.8593805

  23. Mondal, A., Das, M.: Moving object detection for event-based vision using k-means clustering. In: 2021 IEEE 8th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), pp. 1–6 (2021). https://doi.org/10.1109/UPCON52273.2021.9667636

  24. Nguyen, H.H., Ta, T.N., Nguyen, N.C., Bui, V.T., Pham, H.M., Nguyen, D.M.: Yolo based real-time human detection for smart video surveillance at the edge. In: 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE), pp. 439–444 (2021). https://doi.org/10.1109/ICCE48956.2021.9352144

  25. Piatkowska, E., Belbachir, A.N., Schraml, S., Gelautz, M.: Spatiotemporal multiple persons tracking using dynamic vision sensor. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 35–40 (2012). https://doi.org/10.1109/CVPRW.2012.6238892

  26. Pigou, L., Van Herreweghe, M., Dambre, J.: Gesture and sign language recognition with temporal residual networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops (2017)

    Google Scholar 

  27. Rudnev, V., et al.: Eventhands: Real-time neural 3d hand pose estimation from an event stream. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV). pp. 12385–12395 (October 2021)

    Google Scholar 

  28. Saha, S., Lahiri, R., Konar, A., Banerjee, B., Nagar, A.K.: HMM-based gesture recognition system using kinect sensor for improvised human-computer interaction. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2776–2783 (2017). https://doi.org/10.1109/IJCNN.2017.7966198

  29. Shrestha, S.B., Orchard, G.: SLAYER: spike layer error reassignment in time. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 31, pp. 1419–1428. Curran Associates, Inc. (2018). https://papers.nips.cc/paper/7415-slayer-spike-layer-error-reassignment-in-time.pdf

  30. Stewart, K., Orchard, G., Shrestha, S.B., Neftci, E.: Online few-shot gesture learning on a neuromorphic processor. IEEE J. Emerg. Sel. Top. Circ. Syst. 10(4), 512–521 (2020). https://doi.org/10.1109/JETCAS.2020.3032058

    Article  Google Scholar 

  31. Ur Rehman, M., et al.: Dynamic hand gesture recognition using 3D-CNN and LSTM networks. Comput. Mater. Continua, 70, 4675–4690 (2021). https://doi.org/10.32604/cmc.2022.019586

  32. Xu, D., Wu, X., Chen, Y.L., Xu, Y.: Online dynamic gesture recognition for human robot interaction. J. Intell. Robot. Syst. 77(4), 604–618 (2010). https://doi.org/10.1109/TPAMI.2009.204

    Article  Google Scholar 

  33. Zhang, C., Li, H., Wang, X., Yang, X.: Cross-scene crowd counting via deep convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  34. Zhang, Y., et al.: An event-driven spatiotemporal domain adaptation method for DVS gesture recognition. IEEE Trans. Circuits Syst. II Express Briefs 69(3), 1332–1336 (2022). https://doi.org/10.1109/TCSII.2021.3108798

    Article  MathSciNet  Google Scholar 

  35. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012). https://doi.org/10.1109/MMUL.2012.24

    Article  Google Scholar 

  36. Zheng, C., et al.: Deep learning-based human pose estimation: a survey. CoRR abs/2012.13392 (2020). https://arxiv.org/abs/2012.13392

  37. Zhou, Y., Gallego, G., Lu, X., Liu, S., Shen, S.: Event-based motion segmentation with spatio-temporal graph cuts. IEEE Trans. Neural Netw. Learn. Syst. 1–13 (2021)

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank Austin Lai Weng Mun for his help in the dataset collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Colonnier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Colonnier, F., Seeralan, A., Zhu, L. (2023). Event-Based Visual Sensing for Human Motion Detection and Classification at Various Distances. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26431-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26430-6

  • Online ISBN: 978-3-031-26431-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics