Skip to main content

On Low-Resolution Face Re-identification with High-Resolution-Mapping

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13763))

Included in the following conference series:

  • 316 Accesses

Abstract

Low-resolution face re-identification refers to the problem of identifying if the same person’s face appears in two images: one image is low resolution (LR), e.g., from a surveillance camera, and the another one is high resolution (HR), e.g., from a government-issued identification. Research in low-resolution face re-identification has been increasing in the past few years. It can be divided into three categories: i) methods upscaling the LR image to the HR space (HR-mapping), ii) methods employing LR and HR robust features, and iii) methods learning a unified space representation. In this work, we focus on face re-identification using HR-mapping because it yields better results. Our main contribution is an experimental protocol that can be used as guideline in this task. In research, protocols are often neglected and researchers that utilize previous work on their projects have to allocate a significant amount of time to replicating inadequately described methods. We use our experimental protocol as a guideline to create a set of training and testing pairs for face re-identification using dataset VGG-Face-2. In addition, we conducted 18 experiments to validate the experimental protocol. In our experiments, we measured “d-prime” (\(d'\)) and the area under the ROC curve (\(A_z\)). We obtained: \(d'=1.236\) and \(A_z=0.81\) for a 14 \(\times \) 14 LR pixel size set, \(d'=1.900\) and \(A_z=0.91\) for a 28 \(\times \) 28 LR pixel size set and \(d'=2.787\) and \(A_z=0.97\) for a 56 \(\times \) 56 LR pixel size set. We believe that our protocol can be very helpful for researchers in the field because it can be used as a set of guidelines for building comparable and replicable work of their own.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See https://domingomery.ing.puc.cl/material/.

References

  1. Al-Maadeed, S., Bourif, M., Bouridane, A., Jiang, R.: Low-quality facial biometric verification via dictionary-based random pooling. Pattern Recogn. 52, 238–248 (2016)

    Article  Google Scholar 

  2. Boom, B., Beumer, G., Spreeuwers, L.J., Veldhuis, R.N.: The effect of image resolution on the performance of a face recognition system. In: 2006 9th International Conference on Control, Automation, Robotics and Vision, pp. 1–6. IEEE (2006)

    Google Scholar 

  3. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw. Tools (2000)

    Google Scholar 

  4. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: International Conference on Automatic Face and Gesture Recognition (2018)

    Google Scholar 

  5. Cheng, Z., Dong, Q., Gong, S., Zhu, X.: Inter-task association critic for cross-resolution person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2605–2615 (2020)

    Google Scholar 

  6. Deng, J., Guo, J., Niannan, X., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  7. Grgic, M., Delac, K., Grgic, S.: SCface-surveillance cameras face database. Multimed. Tools Appl. 51(3), 863–879 (2011)

    Article  Google Scholar 

  8. Harmon, L.D.: The recognition of faces. Sci. Am. 229(5), 70–83 (1973)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. Heinsohn, D., Villalobos, E., Prieto, L., Mery, D.: Face recognition in low-quality images using adaptive sparse representations. Image Vis. Comput. 85, 46–58 (2019)

    Article  Google Scholar 

  11. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  12. Jia, G., Li, X., Zhuo, L., Liu, L.: Recognition oriented feature hallucination for low resolution face images. In: Chen, E., Gong, Y., Tie, Y. (eds.) PCM 2016. LNCS, vol. 9917, pp. 275–284. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48896-7_27

    Chapter  Google Scholar 

  13. Jiang, J., Ma, J., Chen, C., Wang, Z.: Noise robust face image super-resolution through smooth sparse representation. IEEE Trans. Cybern. 47(11), 3991–4002 (2016)

    Article  Google Scholar 

  14. Jiang, J., Yu, Y., Hu, J., Tang, S., Ma, J.: Deep CNN denoiser and multi-layer neighbor component embedding for face hallucination. arXiv preprint arXiv:1806.10726 (2018)

  15. Jiang, J., Yu, Y., Tang, S., Ma, J., Qi, G.J., Aizawa, A.: Context-patch based face hallucination via thresholding locality-constrained representation and reproducing learning. In: 2017 IEEE International Conference on Multimedia and Expo (ICME), pp. 469–474. IEEE (2017)

    Google Scholar 

  16. Keys, R.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kim, D., Kim, M., Kwon, G., Kim, D.S.: Progressive face super-resolution via attention to facial landmark. arXiv preprint arXiv:1908.08239 (2019)

  18. Kim, M., Jain, A.K., Liu, X.: AdaFace: quality adaptive margin for face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 18750–18759 (2022)

    Google Scholar 

  19. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer vision and Pattern Recognition, pp. 4681–4690 (2017)

    Google Scholar 

  20. Li, P., Prieto, L., Mery, D., Flynn, P.: Face recognition in low quality images: a survey. arXiv preprint arXiv:1805.11519 (2018)

  21. Li, P., Prieto, L., Mery, D., Flynn, P.J.: On low-resolution face recognition in the wild: comparisons and new techniques. IEEE Trans. Inf. Forensics Secur. 14(8), 2000–2012 (2019)

    Article  Google Scholar 

  22. Li, P., Prieto, M.L., Flynn, P.J., Mery, D.: Learning face similarity for re-identification from real surveillance video: a deep metric solution. In: 2017 IEEE International Joint Conference on Biometrics (IJCB), pp. 243–252. IEEE (2017)

    Google Scholar 

  23. Lu, T., Xiong, Z., Zhang, Y., Wang, B., Lu, T.: Robust face super-resolution via locality-constrained low-rank representation. IEEE Access 5, 13103–13117 (2017)

    Article  Google Scholar 

  24. Lu, Z., Jiang, X., Kot, A.: Deep coupled resnet for low-resolution face recognition. IEEE Signal Process. Lett. 25(4), 526–530 (2018)

    Article  Google Scholar 

  25. Main-Author, A.: Title similar to the title of this paper. Master’s thesis, Department of Computer Science, Some University, Some Country (2020)

    Google Scholar 

  26. Mudunuri, S.P., Sanyal, S., Biswas, S.: GenLR-Net: deep framework for very low resolution face and object recognition with generalization to unseen categories. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 602–60209. IEEE (2018)

    Google Scholar 

  27. Neves, J., Proença, H.: ICB-RW 2016: international challenge on biometric recognition in the wild. In: 2016 International Conference on Biometrics (ICB), pp. 1–6. IEEE (2016)

    Google Scholar 

  28. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: Proceedings of the British Machine Vision Conference 2015 (BMVC 2015), pp. 1–12 (2015)

    Google Scholar 

  29. Saha, P., Das, A.: NFGS enabled face re-identification for efficient surveillance in low quality video. In: 2019 Fifth International Conference on Image Information Processing (ICIIP), pp. 114–118. IEEE (2019)

    Google Scholar 

  30. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  31. Schuckers, M.E.: Computational Methods in Biometric Authentication: Statistical Methods for Performance Evaluation. Springer, Heidelberg (2010)

    Book  Google Scholar 

  32. Selwood, D.L.: Commentary: reproducible science, why protocols matter. Chem. Biol. Drug Des. 93(6), 975–978 (2019)

    Article  Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  34. Singh, N., Rathore, S.S., Kumar, S.: Towards a super-resolution based approach for improved face recognition in LR environment. Multimed. Tools Appl. 81, 38887–38919 (2022)

    Article  Google Scholar 

  35. Sønderby, C.K., Caballero, J., Theis, L., Shi, W., Huszár, F.: Amortised map inference for image super-resolution. arXiv preprint arXiv:1610.04490 (2016)

  36. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  37. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  38. Tang, Y., Yang, X., Wang, N., Song, B., Gao, X.: Person re-identification with feature pyramid optimization and gradual background suppression. Neural Netw. 124, 223–232 (2020)

    Article  Google Scholar 

  39. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  40. Wang, X., Li, Y., Zhang, H., Shan, Y.: Towards real-world blind face restoration with generative facial prior (2021). https://arxiv.org/abs/2101.04061

  41. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  42. Wang, Y., Perazzi, F., McWilliams, B., Sorkine-Hornung, A., Sorkine-Hornung, O., Schroers, C.: A fully progressive approach to single-image super-resolution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 864–873 (2018)

    Google Scholar 

  43. Wang, Z., Liu, D., Yang, J., Han, W., Huang, T.: Deep networks for image super-resolution with sparse prior. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 370–378 (2015)

    Google Scholar 

  44. Wang, Z., Yang, W., Ben, X.: Low-resolution degradation face recognition over long distance based on CCA. Neural Comput. Appl. 26(7), 1645–1652 (2015). https://doi.org/10.1007/s00521-015-1834-y

    Article  Google Scholar 

  45. Yang, T., Ren, P., Xie, X., Zhang, L.: GAN prior embedded network for blind face restoration in the wild (2021). https://arxiv.org/abs/2105.06070

  46. Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution face images with supplementary attributes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 908–917 (2018)

    Google Scholar 

  47. Yu, X., Porikli, F.: Face hallucination with tiny unaligned images by transformative discriminative neural networks. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  48. Zhao, K., Xu, J., Cheng, M.M.: RegularFace: deep face recognition via exclusive regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1136–1144 (2019)

    Google Scholar 

  49. Zhao, L., Bai, H., Liang, J., Zeng, B., Wang, A., Zhao, Y.: Simultaneous color-depth super-resolution with conditional generative adversarial networks. Pattern Recogn. 88, 356–369 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prieto, L., Pulgar, S., Flynn, P., Mery, D. (2023). On Low-Resolution Face Re-identification with High-Resolution-Mapping. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26431-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26430-6

  • Online ISBN: 978-3-031-26431-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics