Skip to main content

On Skin Lesion Recognition Using Deep Learning: 50 Ways to Choose Your Model

  • Conference paper
  • First Online:
Image and Video Technology (PSIVT 2022)

Abstract

Skin cancer is a highly relevant health problem around the world. The World Health Organization (WHO) reports that one-third of the diagnosed cancers are skin cancer. It is well known that early detection of skin cancer significantly increases the prognosis of patients. In many cases, however, the absence of clinical devices and qualified experts makes this task very difficult. To overcome this problem, in the last years advanced deep learning techniques have been proposed to recognize skin cancer automatically showing promising results. In this work, we evaluate 50 deep learning approaches on the well-known HAM10000 dataset of dermatoscopic images from seven different skin lesion categories. The approaches have been evaluated using the same experimental protocol. In our experiments, the performance of each approach in terms of accuracy and computational time are measured. In addition, the number of trainable parameters and the number of features of the last layer of the deep learning architecture are given. Thus, comparison between the approaches can be easily established. The results showed that the best performance has been achieved by a deep learning approach based on visual transformers with 84.29% of accuracy on the testing subset. We know that these results may vary significantly on other datasets. For this reason, rather than establish which method is the best, the main contribution of this work is to make the 50 deep learning approaches available in a simple way for future research in the area. We believe that this methodology, i.e., training, testing and evaluating many deep learning methods, can be very helpful to establish which is the best architecture and what is the highest performance that can be achieved on new datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The reader is referred to the review on convolutional neural networks in [8].

  2. 2.

    It has been originally proposed in 1989 for handwritten digit recognition. ConvNet’s became more popular in the 2010s s with the introduction of inexpensive hardware such as GPUs (graphics processing units).

  3. 3.

    See https://domingomery.ing.puc.cl/material/.

  4. 4.

    See http://pytorch.org.

  5. 5.

    See http://pytorch.org/vision/stable/models.html.

  6. 6.

    See https://github.com/lukemelas/EfficientNet-PyTorch.

  7. 7.

    See https://github.com/Vipermdl/ARL.

  8. 8.

    See https://huggingface.co/google/vit-base-patch16-224.

References

  1. Al-masni, M.A., Al-antari, M.A., Choi, M.T., Han, S.M., Kim, T.S.: Skin lesion segmentation in dermoscopy images via deep full resolution convolutional networks. Comput. Methods Programs Biomed. 162, 221–231 (2018)

    Article  Google Scholar 

  2. Ashique, K., Kaliyadan, F., Aurangabadkar, S.: Clinical photography in dermatology using smartphones: an overview. Indian Dermatol. Online J. 6(3), 158 (2015)

    Article  Google Scholar 

  3. Attia, M., Hossny, M., Zhou, H., Nahavandi, S., Asadi, H., Yazdabadi, A.: Digital hair segmentation using hybrid convolutional and recurrent neural networks architecture. Comput. Methods Programs Biomed. 177, 17–30 (2019)

    Article  Google Scholar 

  4. Attia, M., Hossny, M., Zhou, H., Nahavandi, S., Asadi, H., Yazdabadi, A.: Realistic hair simulator for skin lesion images: a novel benchemarking tool. Artif. Intell. Med. 108, 101933 (2020)

    Article  Google Scholar 

  5. Badrinarayanan, V., Handa, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling. arXiv preprint arXiv:1505.07293 (2015)

  6. Barata, C., Celebi, M.E., Marques, J.S.: Improving dermoscopy image classification using color constancy. IEEE J. Biomed. Health Inform. 19(3), 1146–1152 (2015)

    Google Scholar 

  7. Barata, C., Ruela, M., Francisco, M., Mendonca, T., Marques, J.S.: Two systems for the detection of melanomas in dermoscopy images using texture and color features. IEEE Syst. J. 8(3), 965–979 (2014)

    Article  Google Scholar 

  8. Bhatt, D., et al.: CNN variants for computer vision: history, architecture, application, challenges and future scope. Electronics 10(20), 2470 (2021)

    Article  Google Scholar 

  9. Binder, M., Steiner, A., Schwarz, M., Knollmayer, S., Wolff, K., Pehamberger, H.: Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skin lesions: a pilot study. Br. J. Dermatol. 130(4), 460–465 (1994)

    Article  Google Scholar 

  10. Bissoto, A., Fornaciali, M., Valle, E., Avila, S.: (De) constructing bias on skin lesion datasets. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 2766–2774, June 2019

    Google Scholar 

  11. Brinker, T.J., et al.: Deep neural networks are superior to dermatologists in melanoma image classification. Eur. J. Cancer 119, 11–17 (2019)

    Article  Google Scholar 

  12. Daneshjou, R.: Toward augmented intelligence: The first prospective, randomized clinical trial assessing clinician and artificial intelligence collaboration in dermatology. J. Invest. Dermatol. 142(9), 2301–2302 (2022)

    Article  Google Scholar 

  13. Deda, L.C., Goldberg, R.H., Jamerson, T.A., Lee, I., Tejasvi, T.: Dermoscopy practice guidelines for use in telemedicine. NPJ Digit. Med. 5(1), 1–7 (2022)

    Article  Google Scholar 

  14. Dosovitskiy, A., et al.: An image is worth \(16\times 16\) words: transformers for image recognition at scale. CoRR abs/2010.11929 (2020). https://arxiv.org/abs/2010.11929

  15. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  16. Ferrante di Ruffano, L., et al.: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults (2018)

    Google Scholar 

  17. Ganster, H., Pinz, A., Röhrer, R., Wildling, E., Binder, M., Kittler, H.: Automated melanoma recognition. IEEE Trans. Med. Imaging 20(3), 233–239 (2001)

    Article  Google Scholar 

  18. Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Garcia-Rodriguez, J.: A review on deep learning techniques applied to semantic segmentation. arXiv preprint arXiv:1704.06857 (2017)

  19. Goyal, M., Knackstedt, T., Yan, S., Hassanpour, S.: Artificial intelligence-based image classification methods for diagnosis of skin cancer: challenges and opportunities. Comput. Biol. Med. 127, 104065 (2020)

    Article  Google Scholar 

  20. Hamblin, M.R., Avci, P., Gupta, G.K.: Imaging in Dermatology. Academic Press (2016)

    Google Scholar 

  21. Han, S.S., et al.: Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms-a single-center, paralleled, unmasked, randomized controlled trial. J. Invest. Dermatol. 142(9), 2353–2362 (2022)

    Article  MathSciNet  Google Scholar 

  22. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  23. Heibel, H.D., Hooey, L., Cockerell, C.J.: A review of noninvasive techniques for skin cancer detection in dermatology. Am. J. Clin. Dermatol. 21, 513–524 (2020). https://doi.org/10.1007/s40257-020-00517-z

    Article  Google Scholar 

  24. Howard, A., et al.: Searching for MobileNetV3. CoRR abs/1905.02244 (2019)

    Google Scholar 

  25. Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. CoRR abs/1608.06993 (2016)

    Google Scholar 

  26. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)1MB model size. CoRR abs/1602.07360 (2016)

    Google Scholar 

  27. Johr, R.H.: Dermoscopy: alternative melanocytic algorithms - the ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clin. Dermatol. 20(3), 240–247 (2002)

    Article  Google Scholar 

  28. Kamińska-Winciorek, G., Placek, W.: The most common mistakes on dermatoscopy of melanocytic lesions. Postepy Dermatologii I Alergologii 32(1), 33–39 (2015)

    Article  Google Scholar 

  29. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks. CoRR abs/1404.5997 (2014)

    Google Scholar 

  30. LeCun, Y., Kavukcuoglu, K., Farabet, C.: Convolutional networks and applications in vision. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 253–256. IEEE (2010)

    Google Scholar 

  31. Lee, I., Du, X., Anthony, B.: Hair segmentation using adaptive threshold from edge and branch length measures. Comput. Biol. Med. 89, 314–324 (2017)

    Article  Google Scholar 

  32. Liu, Y., et al.: A deep learning system for differential diagnosis of skin diseases. Nat. Med. 26(6), 900–908 (2020)

    Article  Google Scholar 

  33. Liu, Z., Mao, H., Wu, C., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for the 2020s. CoRR abs/2201.03545 (2022). https://arxiv.org/abs/2201.03545

  34. Ma, N., Zhang, X., Zheng, H., Sun, J.: ShuffleNet V2: practical guidelines for efficient CNN architecture design. CoRR abs/1807.11164 (2018)

    Google Scholar 

  35. Moreira, D., Alves, P., Veiga, F., Rosado, L., Vasconcelos, M.J.M.: Automated mobile image acquisition of macroscopic dermatological lesions. In: HEALTHINF 2021–14th International Conference on Health Informatics; Part of the 14th International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2021, pp. 122–132 (2021)

    Google Scholar 

  36. Muñoz-López, C., et al.: Performance of a deep neural network in teledermatology: a single-centre prospective diagnostic study. J. Eur. Acad. Dermatol. Venereol. 35(2), 546–553 (2021)

    Article  Google Scholar 

  37. Navarrete-Dechent, C., Dusza, S.W., Liopyris, K., Marghoob, A.A., Halpern, A.C., Marchetti, M.A.: Automated dermatological diagnosis: hype or reality? J. Invest. Dermatol. 138(10), 2277 (2018)

    Article  Google Scholar 

  38. Pacheco, A.G., Krohling, R.A.: The impact of patient clinical information on automated skin cancer detection. Comput. Biol. Med. 116, 103545 (2020)

    Article  Google Scholar 

  39. Pacheco, A.G., et al.: PAD-UFES-20: a skin lesion dataset composed of patient data and clinical images collected from smartphones. Data Brief 32, 106221 (2020)

    Article  Google Scholar 

  40. Reiter, O., Rotemberg, V., Kose, K., Halpern, A.C.: Artificial intelligence in skin cancer. Curr. Derm. Rep. 8, 133–140 (2019). https://doi.org/10.1007/s13671-019-00267-0

    Article  Google Scholar 

  41. Reshma, G., et al.: Deep learning-based skin lesion diagnosis model using dermoscopic images. Intell. Autom. Soft Comput. 31(1), 621–634 (2022)

    Article  Google Scholar 

  42. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  43. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. CoRR abs/1801.04381 (2018)

    Google Scholar 

  44. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2016)

    Article  Google Scholar 

  45. Sidoroff, A.: The role of clinical photography in dermatology. In: Imaging in Dermatology, pp. 5–11. Elsevier (2016)

    Google Scholar 

  46. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  47. Szegedy, C., et al.: Going deeper with convolutions. CoRR abs/1409.4842 (2014)

    Google Scholar 

  48. Tan, M., et al.: MnasNet: platform-aware neural architecture search for mobile. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828 (2019)

    Google Scholar 

  49. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. CoRR abs/1905.11946 (2019)

    Google Scholar 

  50. Tschandl, P., Rosendahl, C., Kittler, H.: The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 5, 1–9 (2018)

    Article  Google Scholar 

  51. Vestergaard, M.E., Macaskill, P., Holt, P.E., Menzies, S.W.: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting. Br. J. Dermatol. 159(3), 669–676 (2008)

    Google Scholar 

  52. Xie, S., Girshick, R.B., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. CoRR abs/1611.05431 (2016)

    Google Scholar 

  53. Yacin Sikkandar, M., Alrasheadi, B.A., Prakash, N.B., Hemalakshmi, G.R., Mohanarathinam, A., Shankar, K.: Deep learning based an automated skin lesion segmentation and intelligent classification model. J. Ambient. Intell. Humaniz. Comput. 12(3), 3245–3255 (2021). https://doi.org/10.1007/s12652-020-02537-3

    Article  Google Scholar 

  54. Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint arXiv:1605.07146 (2016)

  55. Zakhem, G.A., Fakhoury, J.W., Motosko, C.C., Ho, R.S.: Characterizing the role of dermatologists in developing artificial intelligence for assessment of skin cancer. J. Am. Acad. Dermatol. 85(6), 1544–1556 (2021)

    Article  Google Scholar 

  56. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Attention residual learning for skin lesion classification. IEEE Trans. Med. Imaging 38(9), 2092–2103 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Center for Artificial Intelligence CENIA FB210017, Basal ANID and ANID - iHealth, Millennium Science Initiative Program ICN2021_004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo Mery .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mery, D. et al. (2023). On Skin Lesion Recognition Using Deep Learning: 50 Ways to Choose Your Model. In: Wang, H., et al. Image and Video Technology. PSIVT 2022. Lecture Notes in Computer Science, vol 13763. Springer, Cham. https://doi.org/10.1007/978-3-031-26431-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26431-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26430-6

  • Online ISBN: 978-3-031-26431-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics