Skip to main content

A Comparative Analysis of Different Multilevel Approaches for Community Detection

  • Conference paper
  • First Online:
Metaheuristics (MIC 2022)

Abstract

Community Detection is one of the most investigated problems as it finds application in many real-life areas. However, detecting communities and analysing community structure are very computationally expensive tasks, especially on large networks. In light of this, to better manage large networks, two new Multi-Level models are proposed in order to reduced and simplify the original graph via aggregation of groups of nodes. Both models have been applied on two variants of an immune-inspired algorithm, the first one based on a fully random-search process, and the second based on a hybrid approach. From the experimental analysis it clearly appears that the two proposed models help the random-search and the hybrid immune-inspired algorithms to significantly improve their performances from both computational and quality of found solutions point of view. In particular, the hybrid variant appears to be very competitive and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A user-defined parameter.

References

  1. Arenas, A., Duch, J., Fernández, A., Gómez, S.: Size reduction of complex networks preserving modularity. New J. Phys. 9(6), 176–176 (2007). https://doi.org/10.1088/1367-2630/9/6/176

    Article  MathSciNet  Google Scholar 

  2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 10, 10008–10019 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

    Article  MATH  Google Scholar 

  3. Brandes, U., et al.: On modularity clustering. IEEE Trans. Knowl. Data Eng. 20(2), 172–188 (2008). https://doi.org/10.1109/TKDE.2007.190689

    Article  Google Scholar 

  4. Bu, D., et al.: Topological structure analysis of the protein-protein interaction network in budding yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003). https://doi.org/10.1093/nar/gkg340

    Article  Google Scholar 

  5. Coello Coello, C.A., Cutello, V., Lee, D., Pavone, M.: Recent advances in immunological inspired computation. Eng. Appl. Artif. Intell. 62, 302–303 (2017)

    Article  Google Scholar 

  6. Cutello, V., Oliva, M., Pavone, M., Scollo, R.A.: An immune metaheuristics for large instances of the weighted feedback vertex set problem. In: 2019 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1928–1936 (2019).https://doi.org/10.1109/SSCI44817.2019.9002988

  7. Cutello, V., Fargetta, G., Pavone, M., Scollo, R.A.: Optimization algorithms for detection of social interactions. Algorithms 13(6), 139–153 (2020). https://doi.org/10.3390/a13060139

    Article  MathSciNet  Google Scholar 

  8. Cutello, V., Nicosia, G., Pavone, M., Stracquadanio, G.: An information-theoretic approach for clonal selection algorithms. In: Hart, E., McEwan, C., Timmis, J., Hone, A. (eds.) Artificial Immune Systems, pp. 144–157. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-14547-6

    Chapter  Google Scholar 

  9. Di Stefano, A., Vitale, A., Cutello, V., Pavone, M.: How long should offspring lifespan be in order to obtain a proper exploration? In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8 (2016). https://doi.org/10.1109/SSCI.2016.7850270

  10. Didimo, W., Montecchiani, F.: Fast layout computation of clustered networks: algorithmic advances and experimental analysis. Inf. Sci. 260, 185–199 (2014). https://doi.org/10.1016/j.ins.2013.09.048

    Article  MathSciNet  MATH  Google Scholar 

  11. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. 104(1), 36–41 (2007). https://doi.org/10.1073/pnas.0605965104

    Article  Google Scholar 

  12. Fouladvand, S., Osareh, A., Shadgar, B., Pavone, M., Sharafi, S.: DENSA: an effective negative selection algorithm with flexible boundaries for self-space and dynamic number of detectors. Eng. Appl. Artif. Intell. 62, 359–372 (2017). https://doi.org/10.1016/j.engappai.2016.08.014

    Article  Google Scholar 

  13. Gach, O., Hao, J.K.: Combined neighborhood tabu search for community detection in complex networks. RAIRO-Oper. Res. 50(2), 269–283 (2016). https://doi.org/10.1051/ro/2015046

    Article  MathSciNet  MATH  Google Scholar 

  14. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002). https://doi.org/10.1073/pnas.122653799

    Article  MathSciNet  MATH  Google Scholar 

  15. Guimerà, R., Danon, L., Díaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in a network of human interactions. Phys. Rev. E 68, 065103 (2003). https://doi.org/10.1103/PhysRevE.68.065103

    Article  Google Scholar 

  16. Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30(10), 934–938 (2008). https://doi.org/10.1002/bies.20820

    Article  Google Scholar 

  17. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970). https://doi.org/10.1002/j.1538-7305.1970.tb01770.x

    Article  MATH  Google Scholar 

  18. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004). https://doi.org/10.1103/PhysRevE.69.066133

    Article  Google Scholar 

  19. Newman, M.E.J.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74, 036104 (2006). https://doi.org/10.1103/PhysRevE.74.036104

    Article  MathSciNet  Google Scholar 

  20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004). https://doi.org/10.1103/PhysRevE.69.026113

    Article  Google Scholar 

  21. Noack, A., Rotta, R.: Multi-level algorithms for modularity clustering. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 257–268. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02011-7_24

    Chapter  Google Scholar 

  22. Pavone, M., Narzisi, G., Nicosia, G.: Clonal selection: an immunological algorithm for global optimization over continuous spaces. J. Global Optim. 53, 769–808 (2012). https://doi.org/10.1007/s10898-011-9736-8

    Article  MathSciNet  MATH  Google Scholar 

  23. Schuetz, P., Caflisch, A.: Efficient modularity optimization by multistep greedy algorithm and vertex mover refinement. Phys. Rev. E 77, 046112 (2008). https://doi.org/10.1103/PhysRevE.77.046112

    Article  Google Scholar 

  24. Scollo, R.A., Cutello, V., Pavone, M.: Where the local search affects best in an immune algorithm. In: Baldoni, M., Bandini, S. (eds.) AIxIA 2020. LNCS (LNAI), vol. 12414, pp. 99–114. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77091-4_7

    Chapter  Google Scholar 

  25. Spampinato, A.G., Scollo, R.A., Cavallaro, S., Pavone, M., Cutello, V.: An immunological algorithm for graph modularity optimization. In: Ju, Z., Yang, L., Yang, C., Gegov, A., Zhou, D. (eds.) UKCI 2019. AISC, vol. 1043, pp. 235–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29933-0_20

    Chapter  Google Scholar 

  26. Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world’’ networks. Nature 393(6684), 440–442 (1998). https://doi.org/10.1038/30918

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocco A. Scollo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bordonaro, G., Scollo, R.A., Cutello, V., Pavone, M. (2023). A Comparative Analysis of Different Multilevel Approaches for Community Detection. In: Di Gaspero, L., Festa, P., Nakib, A., Pavone, M. (eds) Metaheuristics. MIC 2022. Lecture Notes in Computer Science, vol 13838. Springer, Cham. https://doi.org/10.1007/978-3-031-26504-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26504-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26503-7

  • Online ISBN: 978-3-031-26504-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics