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Abstract. Predictive process monitoring approaches aim to make pre-
dictions about the future behavior for running instances of business pro-
cesses, such as next activity or remaining time. Most of these approaches
use single object type event logs as if the business process is operating
in isolation. Whereas, in an organization, several instances of different
processes related to a set of objects can be executed at the same time and
may interact with each other. This paper investigate the use of object-
centric event logs as they offer information about events and their related
objects, allowing access to a global view about the running processes in
an organization. We propose an object-centric predictive approach con-
sidering interactions between different object types. The proposed ap-
proach is evaluated on a publicly available object-centric log. The analy-
sis of the results shows that using additional features (i.e., several object
types’ information) can generally help increase prediction performances.

Keywords: Predictive Monitoring - Object-centric Event Log - Process
Mining.

1 Introduction

Process Mining has seen many developments over the last years with the ad-
vances of artificial intelligence domain, especially in machine and deep learning.
Researchers have adapted innovative machine learning models and architectures
to apply them on the different process mining techniques like process discovery,
conformance checking and process enhancement. Process mining takes as input
an event log recording events related to the execution of a process. The proposed
techniques until recently worked on single case identifier event logs. This type of
event logs is limited to a single perspective i.e. single type of object of a process
whereas real processes can have multiple perspectives and incorporate multiple
objects. These event logs have limited the use of process mining to studying
a precise aspect of a process rather than all interactions between objects and
processes, and also posed other problems like convergence and divergence [1]
due to differences between the event logs and the reality of processes. Object-
centric event logs (OCEL) are rather different than classic event logs with closer
representation of real processes. OCELs store information about the process on
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multiple aspects in one event log with the use of object types. OCELs allow ac-
cess to the process covering all the related instances. For example in the case of
order management process, an OCEL will contain information about instances
ranging from placing the order, products management until the package delivery.
Recently, there have been general interest in the use of OCELs for process mining
especially in process discovery using Petri nets [4] and performance analysis [9].
But, to the best of our knowledge, there is still no approach tailored for OCEL
for predictive process monitoring, especially for behavior prediction. When we
try to use OCEL for prediction tasks, the first problem we face is identifying
the trace ID. In OCEL, an event is not associated with a single case ID, as in
classical logs. While classical logs can be obtained by flattening the log, using
these logs in isolation may not take into account the interaction between objects.

In this paper, we analyze the specific challenges that OCEL poses for predic-
tive monitoring and we investigate whether taking into account the interaction
between objects may improve the prediction. We propose a first approach for
predictive monitoring, more precisely next activity and time prediction (next
event and remaining time).

We adapt the LSTM architecture inspired from [17], that have been proven
to have very good results on traditional event logs. We extend this architecture
to predict instance remaining time and obtain better results than predicting
activities iteratively until the end of the sequence. We evaluate our model and
approach on a publicly available OCEL ! and we made available the code on
Github 2.

The remainder of the paper is as follows. Section 2 discusses related work on
object-centric event logs and predictive process monitoring. Section 3 introduces
the basic notions and formal definitions for event logs. Section 4 presents the
proposed LSTM model and the approach from data preprocessing to prediction
tasks. Section 5 presents the experimental results and Section 6 concludes the

paper.

2 Related Work

To the best of our knowledge, there are no dedicated works that examine both
predictive process monitoring and object-centric event logs. To address this gap,
we discuss first some works on object-centric event logs and then some works on
predictive process monitoring.

Object-centric process mining. Process mining [3] is a set of techniques that can
be applied on event logs such as process discovery to detect patterns and model
processes. There are also techniques like conformance checking and process en-
hancement with the objective of improving the process performance and making
sure that the process is conforming to established norms.

! ocel-standard.org/1.0/running-example. jsonocel.zip

2 https://github.com/wissam-gherissi/PPM-0C
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Recently, researchers have been studying a new format of event logs called
object-centric event logs [10] as an alternative to traditional single case event
logs to overcome problems like "convergence" and "divergence" mentioned in [1]
and present new insights on processes.

In order to represent multiple processes in the same event log, [2] propose
the idea of federated process mining utilizing event data from different sources
of information in the same organization or across organizations. Other papers
working on this type of event logs evolve around the technique of process discov-
ery by discovering the process Petri net in [4] or the behavioral constraints model
in [13], hence discovering the different relations between the activities and mul-
tiple object types. Furthermore, the notions of precision and fitness as metrics
to evaluate process discovery have been adapted for the case of object-centric
event logs in [5].

Predictive process monitoring. In predictive process monitoring papers, differ-
ent approaches and models were applied on traditional event logs for a variety
of prediction tasks. For next activity and time remaining predictions, models
were proposed such as recurrent neural networks (RNNs) [11] [12], convolutional
neural networks (CNNs) [15] [8], attention mechanisms [16] and transformers [6].

LSTMs were studied in [17], [7] and [14] as a solution for sequence prediction
given the long memory capacity of this architecture. Precisely in [17], the model
is constructed using LSTM layers for multiple prediction tasks (next activity,
next event time, suffix prediction, time remaining prediction) using one model
with a single training step for different tasks rather than training multiple models
divided over the tasks. We choose this architecture for its performances on classic
logs. We adapt it for OCEL, by introducing changes in the data preprocessing
part and to the model construction, adding a LSTM layer for the remaining time
prediction task.

All of these previous works presented in this part have focused on implement-
ing prediction models and studying patterns for traditional event logs rather than
object-centric event logs.

Finally, the closest paper to our approach is working on the combination
of object-centric event logs and predictive process analytics in [9]. This work,
although used object-centric event logs, is focused on predictive analysis and
performance indicators using gradient boosting. In this paper, we use neural
networks and LSTMs for predicting process behavior, precisely next activity,
next event time and remaining time using object-centric event logs.

3 Preliminaries

In this section, we introduce the basic notions for object-centric event logs and
LSTMs that will be used in this paper.

3.1 Object centric event logs

These notions are based on the definitions of [10].
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Definition 1. (Universes) The used universes are: Ug the universe of events,
Uqaer the universe of activities, Ugyy the universe of attribute names, Uyq the
universe of attribute values, Uy, the universe of attribute types, U, the universe
of object identifiers, Uy is the universe of object types, Uger the universe of
activities, Ugme the universe of timestamps.

Definition 2. (OCEL) An object-centric event log is defined in [10] as a tu-
ple L= (E7 AN» A‘/v AT OTv O» Ttyps Tacts Ttimes Tomapsr Tomaps Totyps Tovmap <)
where,

— E C Ug is the set of events. AN C Uy is the set of attribute names.
AV C Uyq is the set of attribute values. AT C Uy, is the set of attribute
types. O C U, is the sel of object identifiers. OT C U, is the set of object
types.

— Typ + AN U AV — AT is the function associating each attribute name or
value to the corresponding attribute type. maer : E — Uger s the function
associating each event with its activity. Time @ E — Upime s the function
associating each event with a timestamp.

— Tymap : £ — (AN 4 AV) such that:
Ttyp(N) = Teyp(Tomap(€)(n)) Ve € E,¥n € dom(Tymap(€))

is the function associating an event identifier to its attribute value assign-
ments with the condition that the attribute name and value have the same
attribute type.

— Tomap : £ — P(O) is the function associating an event identifier to a set of
related object identifiers. In the case of additional objects identifiers used in
the definition 4, we use the notion of Trmap

— Totyp € O = OT is the function assigning precisely one object type for each
object identifier.

— Tovmap : O = (AN 4 AV) such that

Tiyp(N) = Teyp(Tovmap(0)(n)) Vo € E,¥n € dom(Tymap(0))

is the function associating an object to its attribute value assignments. Each
object is related to attributes with attribute name and value such that the
name and the value must have the same attribute type.

— < is a partial order based on the timestamps of events such that

e1 < ey = Tume(€1) < Trime(€2)

An example of an OCEL is shown in Table 1 for the process of ordering
products for deliver. As it can be seen, the order have many related objects such
as the ordered items and the packages in which the delivery is happening.

Definition 3. (Single object type event log) Inspired from the Object type Pro-
jection definition in [1], a single object type event log (an example is shown in

Table 2) is defined as follows:
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Event Activity Timestamp Objects Attributes
identifier name Order Ttem Package || Price |Weight
70 place order | 2019 05— 221033 : 18 {990018} {880074, 880075, ...} 0 823.98 | 1.97
71 confirm order | 2010 - 05 - 22 10:34: 00 {990008} {880023, 880024, ...} 0 1428.97| 3.75
14230 pick item | 2010 12311721750 {991296} (885262} 0 29.99 | 0.38
14231 |item out of stock| 2019 — 12— 31 17: 20 10 {991291} {885233} 0 79.99 | 0.483

17900 | create package | 2020 o2 24 13- 45 - s0|| {991572, 991393, . . .} | {886439, 836438, .. .} |{661050}||1424.97| 2.852
17901 | send package | 2010 12~ 311352« 1s||{991583, 991604, . ..} |{886559, 886479, .. .}|{661048}||2749.97| 3.01

Table 1. Example of object centric event log describing order management process

(E°t, <°Y) is a projection of the events of an object-centric event log on a
single object type, where for a specific ot € Uy

e € E such as e = (ei, act, time, omap,vmap), E” = {¢ € E | Tomap(c)(ot) # 0} and

<%= {(e1,e9) € E® x E°' | €1 g ea A Tomap (€1) (08) N Tomap (e2) (0t) # 0}

Case identifier| Activity name Timestamp
990018 place order 2019 - 05 33018
990008 confirm order | 2019 - 05 34: 00
991296 pick item 2019 — 12 — 31 17 : 17 : 59
991291 item out of stock| 2010 — 12 ~3117:20: 10
991572 create package | 2020 - 02 - 24 13: 45: 30
991583 send package | 2019 — 12— 31135248

Table 2. Extracting single OBject type”e‘vent log on order object type from Table 1

4 Predictive process monitoring for object-centric logs

As we have seen in the previous section, multiple object types might interact and
influence each other in a process, resulting in multiple case notions. Our goal
is to handle these case notions in predictive monitoring. With an object-centric
log, user may be interested in :

— P1: making predictions about a given object (next activity for a given item,
delivery date of a given package)

— P2: making predictions about the global process (in an order management,
what is the next activity concerning the related items, packages, etc)

For the first type of prediction (P1), it is possible to use the single object
type to make predictions for a given object. However, in some cases, user could
be interested in defining a custom object life cycle. Thereby, we define a filtered
log notion.

For the second type of prediction (P2) for a global process, using the single
object type log may not be sufficient, as the interactions between objects are not
taken into account. For this reason, we propose the enriched log notion.
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Consider the process of ordering products for delivery (whose log is presented
in Table 1), where an order is placed first by the customer for the purchase and
delivery of products. In order to consider the instance of an order as completed,
all the other related objects (items, packages) have to have their instances com-
pleted. In this case, the orders is the global process. It is clear that predicting
the remaining time until the completion of the order instance should take into
account the interactions between objects.

In the following, we define the notions of enriched and filtered log useful for
object-centric predictive monitoring.

First, we define a new type of event log where each event, in addition to the
single object type projection, is enriched with a set of the other related objects
identifiers.

Definition 4. (Enriched single object type event log) An enriched single object
type event log (E°,., <% ) (an example is shown in Table 3) is a projection of
an object-centric event log on a single object type ot with the addition of an
event attribute rmap describing the set of related object identifiers with types ro
included in enr :

e€ B’

o such as e = (ei, act, time, rmap, vmap)
EC = {e € E | momap(e)(ot) = ei,¥ro € ent, Trmap(e)(ro) # 0} and

5gfw: {(e1,e2) € Bt x B | e1 =E €2 A Tomap (€1) (0t) N Tomap (e2) (0f) # 0}

Event Activity Timestamp Related Objects
identifier name Item Package

{880074,880075,...}| 0
{880048,880049,...}| 0

990018 place order 2019 — 05 — 22 10 : 33
990008 | confirm order | 2019 — 05— 22 10:34: 0

o

S

991296 pick item 2019 — 12 — 81 17 : 17 : 5

o {885262} 0
991291 |item out of stock| 2019 — 12— 31 1720 10 {885233} 0
991572 | create package | 2020 — 02 — 24 13 . 45 : 30| | {886439, 886438, ...}|{661050}
991583 | send package | 2010 — 12 — 31 13 52 : 4s||{886559, 886479, .. .}|{661048}

Table 3. Example of enriched single object type event log on order object type from
Table 1

The simple object log is enriched with information about the related objects.
Thus object interaction is extracted, allowing to take into account that a specific
object type process evolution is affected by the progress made by other related
objects processes.

Definition 5. (Filtered simple object event log) A filtered simple object event
log is a simple object event log where only events concerning activities of interest
for the user are kept.
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This allows an analyst to define the object cycle which is of interest for him
for the predictive monitoring, by eliminating activities which do not influence
or are not relevant for the object life cycle. An example of a filter is shown in
Table 4.

4.1 Pipeline for predictive process monitoring

The workflow of our approach is detailed below. It consists of three main steps:
event log preprocessing, feature engineering, and prediction model construction.

Event log preprocessing. The first step of the approach is extracting the types
of logs we described above by first flattening the OCEL over specific object types.
Flattening an object-centric event log is transforming it into a single object type
event log as per Definition 3. In the case of an event having multiple objects
of the same type, that event is extracted in each separate "flattened" event log
maintaining pertinent traces for all objects (this corresponds to the convergence
phenomenon which, contrary to process modeling, is not a problem for process
analysis).

As explained above, in some cases, an additional filter on the event log must
be applied in order to specify the object types of interest for each activity result-
ing in a filtered log as per definition 5. An example is shown for further details
in the Section 5.

Starting from the flattened log for a given object, the enriched single object
type event log (Definition 4) will be built by adding an additional attribute,
namely the set of objects related to the given object. As for example, in the
order management example, an event can refer to multiple object types used
like orders, items and packages.

Feature engineering. In this step, the goal is to prepare the input data for the
prediction model. First, in the case of deep learning models, input data has to be
of fixed shape. The input will be a multi-dimensional matrix containing features
for each activity of each case. After calculating the maximum trace length (i.e.,
the number activities describing the execution of one case), its dimensions are
defined as number of cases x max_trace length x number of features.

The features set for the input matrix contain both categorical and numerical
attributes. Categorical features describe the activity taking place during each
event. Numerical features describe temporal properties of the event (time dura-
tion between the event and the start of the sequence, time since the last event,
time of the day (since midnight) and the day of the week). These features also
describe the related objects set in the enriched event log by calculating their
number (in our case, we calculate the number of related items).

Prediction model construction. The prediction tasks are multi-class classifi-
cation for next activity prediction and regression for next event time prediction
and instance time remaining. In the first task, for each event and based on a
fixed size prefix, the model predicts the probability for each activity being the
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next event and the activity with the highest probability will be selected as the
model’s prediction for next activity. For the second task, the model predicts the
duration after which the next activity will need to be executed. For the remain-
ing time prediction, the model predicts the duration separating the present time
step and the end of the instance. In [17], remaining time can be predicted using
the same model by using a loop to predict the next event time until the model
predicts the end of the sequence and the remaining time will be the sum of
predictions. In this paper, we applied a modification to the model architecture
by adding an LSTM layer for predicting the instance remaining time directly
instead of looping over the same model for multiple prediction, thus decreasing
the error rates.

Our implemented model is inspired by the architecture used in [17]. It is
composed of four LSTM layers of size 100, the first layer is shared for all tasks
taking on the data matrix as input, the other three layers are divided into the
prediction tasks taking in as input the output of the shared layer.

The next activity layer feeds its output to a fully connected layer with soft-
max activation function 2, the output size is equal to the number of unique
activities plus one class that will characterize the end of a trace, thus calculat-
ing the probabilities of belonging to each class. The time prediction layers feed
the output to a fully connected layer with output of size 1 to predict the time
remaining until the next activity or until the end of the sequence.

All performances recorded below are the mean of the performances on all
prefixes length ranging from 2 to maximum trace length - 1. For next activity
prediction, we use the accuracy metric. For time prediction tasks, we evaluate
the model’s performance using MAE (Mean Absolute Error) in days.

The implemented model is further summarized in the figure 1:

LSTM Dense Next Activity
n =100 (100, Prediction

Input Matrix [ Lsm [sm ) [ Dense Next Event Time
L

Lxmxf) _n=100 |_n=100 | (100,1) Prediction
LSTM Dense Time Remaining
n= 100 (100,1) Prediction

Fig. 1. Model architecture: L: number of sentences, m: mazximum trace length, f: num-
ber of features, n: number of neuros, c¢: number of unique

5 Experimental Results

We implemented the approach presented in previous section in Python and we
made the code publicly available? for reproducible results.

3 Softmax function: o(z;) = == fori=1,2,...,K
Zj:l e™J

4 https://github.com/wissam-gherissi/PPM-0C
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The results presented were implemented on the following configuration: HP
Elitebook 830 G8, processor: Intel Core i7-1185G7 @3.00GHz with 64GB RAM.

Data. We applied the approach propposed above on an order management
object-centric event log °. The event log is composed of 22367 events and 5 ob-
jects types: "customers", "items", "orders", "packages" and "products". There
are 17 different customers, 8159 items, 2000 orders, 1325 packages and 20 prod-
ucts.

In the enrichment step, we add a numerical feature describing the number of
related items for each event. For example, for an event with the activity "place
order", we add the number of items ordered during that event. For the package
object type, we have the possibility of choosing orders or items or both as related
objects. We limit the experiments on the items as related objects for this paper.

We focus on three object types (order, item and package), whose relation-
ships are presented in figure 2. We expect that adding the other types (customer
and product) would no have significant impact on predictions, given the cardi-
nality of their relationship (one customer per order and one product per item).
Furthermore, given these relationships between the items and the other object
types (one order/package per item), we limit the enrichment step to the order
and package object types. This results in "NA"(Not Applicable) values observed
in Table 5 for the enriched event log on item level.

* |

1. 1.
Order ——— Package

1 \ / 1

Fig. 2. Object types relationships overview

Prediction results. We present the prediction results of our approach for the dif-
ferent types of tasks we proposed. First, we suppose that the analyst is interested
in making predictions for custom object life-cycle and then we present results
on the complete object-life cycle and on the global process. We flatten the event
log on the order, item and package object types in addition to a custom filter
on the activity-object type combination presented in the table 4. The prediction
results are presented in Table 5.A.

Table 5.B presents prediction results for complete event logs flattened on
object types: order and item (without any filter on activities). For the packages,
there are only four related activities; all these activities have been selected in
the filter, thus the filtered log and the complete log are the same.

In Table 5.A, we observe satisfying results for the accuracy for next activity
prediction with over 87% for order and item object types and over 75% for

® http://ocel-standard.org/1.0/running-example.jsonocel.zip
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Activity Object type
Place order Order, item
Confirm order Order, item
Payment reminder Order
Pay order Order
Ttem out of stock Ttem
Reorder item Item
Pick item Ttem
Create package Ttem, Package
Send package Item, Package

Failed delivery Ttem, Package
Package delivered Item, Package

Table 4. Activity-Object type Filter

package with improvement for the case of enriched event log. For time prediction,
we have order object type sequences with an average trace length of 20 days, we
observe less than 7 days for next event time and 9 days for remaining time. For
package object type, average trace length is 1.55 days. we have MAEs of 0.61
and 0.28 for next event time and remaining time respectively. For the items, we
have an average trace length of 15.5 days. Error rates are 1.13 and 1.62 for next
event time and remaining time.

Object fype Prediction Task Single BL Enriched EL
Order Next, Activity 087
Accuracy
Ordor Noxt Event Timo 670 TR Ohject type Prediction Task Shugle L. Furichod BL
MAE (days) Order Next Activity 0.60 0.63
Order Rewaining Tine 1221/8.70 TL66/1L71 Accuracy
MAE (days) Order Next Bvent Timo T 0.95
Package Next Event 075 077 MAE (days)
Aceuracy Order Rewaming Tune /8.2 ST
Packago Next Event Time [ 0.59 MAE (days)
MAE (days) Teem Next Activity 0.7 NA
Package Remaining Tine 055/029 052/0.28 Accuracy
MAE (days) Teem Next Bvent, Timo 62 NA
Teem Next Bvent 057 hEY MAE (days)
Accuracy Trem Rewaming Tune 35/5.62 NA
Tiom Noxt Event Timo (5] LY MAF (days)
MAE (days)
T Remaining Tine 6.04/1.62 ~A

Table 5. (A) Prediction results for the filtered event log and enriched flattened on
order, item and package object types (left), (B) Prediction results for the complete
event log and enriched flattened on order and item object types (right)

In Table 5.B, in next activity prediction, we observe accuracy over 60% for
order and 78% for item. We notice improvement in terms of accuracy for the
enriched event log for order object type. In next event time and remaining time
predictions, we observe error rates of 0.95 and 8.2 respectively for order object
type. For items, we have the following errors rates 1.62 and 5.62 for next event
time and remaining time respectively. In the case of remaining time predictions,
we observe improvement on error rates with the additional LSTM layer compared
to iterative predictions proposed in [17]. We can see that the MAE for item object
type is improved up to 10 times with our architecture.

Discussion. Based on the experimental results of Table 5, we get overall improve-
ments for enriched event log in terms of accuracy for next activity prediction and
MAE for time predictions. This can be explained by the addition of a numeri-
cal feature (number of items) to the input matrix, this feature can help extract
the influence of the number of related items in the scheduling of activities and
the time remaining until the end of the sequence. The exception for this is the
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remaining time for the orders, where the enrichment of the log do not seem to
improve the results. This may be explained by the fact that Orders is the global
process for the considered log, thus already containing all the information about
the related objects.

The model with an additional LSTM layer used for remaining time prediction
has proven to be more efficient and accurate compared to the iterative model.
Based on the experimental results, the proposed approach has enhanced the
prediction performances on almost all the object types and event logs.

The proposed approach can be resumed in two steps. First, we tried feature
enrichment using the number of related items which has proven experimentally
to enhance the model’s performances especially on the accuracy for next activity
prediction. Second, we added a new LSTM layer dedicated to predict remaining
sequence time instead of the classic iterative approach, this change has enhanced
the prediction performances and reduced greatly the MAE on almost all object
types and event logs both single and enriched. More experiments should be done
to validate these preliminary results.

6 Conclusion

In this paper we proposed a first approach for predictive monitoring tailored to
object centric logs. Specifically, we addressed the problem of next activity pre-
diction, next event time and remaining time (until the end of process) prediction.
A single neural network architecture based on LSTM has been experimentally
evaluated for these tasks. We showed that taken into account related objects im-
prove overall its performance. Compared with existing LSTM-based approaches
for predictive monitoring, our architecture allows also to predict the remaining
time until the end of the instance execution. The experimental results showed
that the produced output for remaining time is better than the one computed
by iteratively predicting next event time until the end of the process. In future
work, we plan to propose new neural network architectures integrating more
features of OCEL and compare them with the basic approach proposed in this
paper. Our evaluation is based on the single OCEL log publicly available. We
intend to extend this evaluation by searching more real-life logs from industrial
partners or by building synthetic logs.
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