Abstract
More and more enterprises are increasingly gaining technical and economic benefits from the global cloud marketplace.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chen, Y., Shi, T., Ma, H., Chen, G.: Automatically design heuristics for multi-objective location-aware service brokering in multi-cloud. In IEEE SCC, pp. 206–214 (2022)
Heilig, L., Buyya, R., Voß, S.: Location-aware brokering for consumers in multi-cloud computing environments. ACM JNCA 95, 79–93 (2017)
Poaka, V., Hartmann, S., Bochinski, M., Seggelke, N.: New architectural design of the runtime server for remote vehicle communication services. SAE Int. J. Connected Autom. Veh. 3, 19–26 (2020)
Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a taxonomy and survey. ACM CSUR 51, 1–33 (2018)
Sadeghiram, S., Ma, H., Chen, G.: A novel repair-based multi-objective algorithm for QoS-constrained distributed data-intensive web service composition. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2020. LNCS, vol. 12342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62005-9_35
Sadeghiram, S., Ma, H., Chen, G.: Priority-based selection of individuals in memetic algorithms for distributed data-intensive web service compositions. IEEE TSC 15(5), 2939–2953 (2022)
Shi, T.: Location-aware application deployment in multi-cloud. PhD thesis, Victoria University of Wellington (2022)
Shi, T., Ma, H., Chen, G.: A genetic-based approach to location-aware cloud service brokering in multi-cloud environment. In IEEE SCC, pp. 146–153 (2019)
Shi, T., Ma, H., Chen, G.: A seeding-based GA for location-aware workflow deployment in multi-cloud environment. In IEEE CEC, pp. 3364–3371 (2019)
Shi, T., Ma, H., Chen, G.: Divide and conquer: seeding strategies for multi-objective multi-cloud composite applications deployment. In ACM GECCO Companion, pp. 317–318 (2020)
Shi, T., Ma, H., Chen, G.: Seeding-based multi-objective evolutionary algorithms for multi-cloud composite applications deployment. In: IEEE SCC, pp. 240–247. IEEE (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained application replication and deployment in multi-cloud environment. In: IEEE ICWS, pp. 110–117 (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service deployment for composite applications in multi-cloud environment. IEEE TPDS 31, 1954–1969 (2020)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Cost-effective web application replication and deployment in multi-cloud environment. IEEE TPDS 33, 1982–1995 (2021)
Shi, T., Ma, H., Chen, G., Hartmann, S.: Location-aware and budget-constrained service brokering in multi-cloud via deep reinforcement learning. In: Hacid, H., Kao, O., Mecella, M., Moha, N., Paik, H. (eds.) ICSOC 2021. LNCS, vol. 13121, pp. 756–764. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-91431-8_52
Tan, B., Ma, H., Mei, Y., Zhang, M.: Evolutionary multi-objective optimization for web service location allocation problem. IEEE TSC 14, 458–471 (2021)
Ma, H., Schewe, K., Thalheim, B., Wang, Q.: A formal model for the interoperability of service clouds. SOCA 6, 1–17 (2012)
Ma, H., Schewe, K., Wang, Q.: An abstract model for service provision, search and composition. In IEEE APCSC, pp. 95–102 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, T., Hartmann, S., Chen, G., Ma, H. (2023). Location-Aware Cloud Service Brokering in Multi-cloud Environment. In: Troya, J., et al. Service-Oriented Computing – ICSOC 2022 Workshops. ICSOC 2022. Lecture Notes in Computer Science, vol 13821. Springer, Cham. https://doi.org/10.1007/978-3-031-26507-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-26507-5_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26506-8
Online ISBN: 978-3-031-26507-5
eBook Packages: Computer ScienceComputer Science (R0)