Skip to main content

SR-MuSig2: A Scalable and Reconfigurable Multi-signature Scheme and Its Applications

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13837))

Included in the following conference series:

Abstract

Multi-signature is a kind of digital signature with a wide range of uses, such as certificate authorities signing certificates, which can enable a group of signers to sign the same message in a very short period, thereby aggregating a compact signature. In this work, we propose SR-MuSig2, a multi-signature scheme with scalability and reconfigurability. First of all, we use a tree structure to significantly improve the efficiency of computation and communication of signers, so that the scheme can support a large number of participants signing simultaneously and has better scalability. For the reconfigurability, SR-MuSig2 supports the signers to revoke passively or actively from the signer group, while can effectively generate the signature and complete the verification. Then we implement a prototype system in Python, and evaluate our scheme in the simulation network environment. The experimental results show that SR-MuSig2 is able to generate aggregated signature in an acceptable time with up to thousands of signers, and it can complete the signing process in only 12 s when there are \( 2^{11} \) signers. In addition, when 5% of the nodes in the signer group (up to \( 2^{11} \) signers) go offline, SR-MuSig2 only needs to update the values of 2.6% of the remaining nodes (nearly 66 s) instead of updating the values of all the remaining nodes to recover signing process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alangot, B., Suresh, M., Raj, A.S., Pathinarupothi, R.K., Achuthan, K.: Reliable collective cosigning to scale blockchain with strong consistency. In: Proceedings of the Workshop Decentralized IoT Security Standards, pp. 1–6 (2018)

    Google Scholar 

  2. Kılınç Alper, H., Burdges, J.: Two-round trip schnorr multi-signatures via delinearized witnesses. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 157–188. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_7

    Chapter  Google Scholar 

  3. Bagherzandi, A., Cheon, J.H., Jarecki, S.: Multisignatures secure under the discrete logarithm assumption and a generalized forking lemma. In: CCS (2008)

    Google Scholar 

  4. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general forking lemma. In: CCS 2006 (2006)

    Google Scholar 

  5. Castelluccia, C., Jarecki, S., Kim, J., Tsudik, G.: A robust multisignature scheme with applications to acknowledgement aggregation. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 193–207. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30598-9_14

    Chapter  Google Scholar 

  6. Drijvers, M., Edalatnejad, K., Ford, B., Kiltz, E., Loss, J., Neven, G., Stepanovs, I.: On the security of two-round multi-signatures. In: 2019 IEEE Symposium on Security and Privacy SP, pp. 1084–1101 (2019)

    Google Scholar 

  7. Itakura, K.: A public-key cryptosystem suitable for digital multisignatures. NEC Res. Devel. (71), 1-8 (1983)

    Google Scholar 

  8. Kogias, E.K., Jovanovic, P., Gailly, N., Khoffi, I., Gasser, L., Ford, B.: Enhancing bitcoin security and performance with strong consistency via collective signing. In: Usenix Security 16, pp. 279–296 (2016)

    Google Scholar 

  9. Ma, C., Weng, J., Li, Y., Deng, R.H.: Efficient discrete logarithm based multi-signature scheme in the plain public key model. DCC 54, 121–133 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Maxwell, G., Poelstra, A., Seurin, Y., Wuille, P.: Simple schnorr multi-signatures with applications to bitcoin. Des. Codes Crypt. 87(9), 2139–2164 (2019). https://doi.org/10.1007/s10623-019-00608-x

    Article  MathSciNet  MATH  Google Scholar 

  11. Micali, S., Ohta, K., Reyzin, L.: Accountable-subgroup multisignatures: extended abstract. In: CCS 2001 (2001)

    Google Scholar 

  12. Nick, J., Ruffing, T., Seurin, Y.: MuSig2: simple two-round schnorr multi-signatures. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12825, pp. 189–221. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84242-0_8

    Chapter  Google Scholar 

  13. Nick, J.D., Ruffing, T., Seurin, Y., Wuille, P.: Musig-dn: schnorr multi-signatures with verifiably deterministic nonces. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security(2020)

    Google Scholar 

  14. Okamoto, T.: Provably secure and practical identification schemes and corresponding signature schemes. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 31–53. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_3

    Chapter  Google Scholar 

  15. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991). https://doi.org/10.1007/BF00196725

    Article  MathSciNet  MATH  Google Scholar 

  16. Syta, E., et al.: Scalable bias-resistant distributed randomness. In: In 2017 IEEE Symposium on Security and Privacy SP, pp. 444–460. IEEE (2017)

    Google Scholar 

  17. Syta, E., et al.: Keeping authorities “honest or bust” with decentralized witness cosigning. In: 2016 IEEE Symposium on Security and Privacy SP, pp. 526–545 (2016)

    Google Scholar 

  18. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 288–304. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_19

    Chapter  Google Scholar 

  19. Xiao, Y.L., Zhang, P., Liu, Y.: Secure and efficient multi-signature schemes for fabric: an enterprise blockchain platform. TIFS 16, 1782–1794 (2021)

    Google Scholar 

  20. Yao, A.C.C., Zhao, Y.: Online/offline signatures for low-power devices. TIFS 8, 283–294 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, W., Zhang, R. (2023). SR-MuSig2: A Scalable and Reconfigurable Multi-signature Scheme and Its Applications. In: Deng, Y., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2022. Lecture Notes in Computer Science, vol 13837. Springer, Cham. https://doi.org/10.1007/978-3-031-26553-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26553-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26552-5

  • Online ISBN: 978-3-031-26553-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics