Skip to main content

Adaptive Fault-Tolerant Control Design for Multi-linked Two-Wheel Drive Mobile Robots

  • Chapter
  • First Online:
Mobile Robot: Motion Control and Path Planning

Abstract

This chapter presents the algorithmic design of an adaptive Fault Tolerant Control (FTC) to address several tasks needed for \(n\)-linked mobile robots subjected to actuator faults and friction phenomena. Firstly, it presents the development of kinematic and dynamic models for \(n\)-linked wheel drive mobile robot systems. Then, the kinematic model is transformed into a chained form and an approach to generate desired feasible trajectories is proposed. After that, a Lyapunov kinematic control law to control each state of the system and stabilize the tracking error is presented. In practice, the multi-robot system is affected by some disturbances, as for instance friction phenomena. Moreover, actuator faults may occur during the system life. Therefore, an adaptive law was designed to estimate the unknown friction coefficients and faults to adapt the control law online, leading to a multi-design integration-based adaptive controller. The asymptotical stability of the closed-loop is proven applying the Lyapunov theory. Simulations are performed in MATLAB/SIMULINK with different faulty cases, showing the efficiency of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma V, Gordon G, Simmons R et al (2004) Real-time fault diagnosis [robot fault diagnosis]. IEEE Robot Autom Mag 11(2):56–66

    Article  Google Scholar 

  2. Yuan J, Sun F, Huang Y (2015) Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching. IEEE Trans Industr Electron 62(12):7665–7677

    Article  Google Scholar 

  3. Kolmanovsky I, McClamroch N (1995) Developments in nonholonomic control problem. IEEE Control Syst Mag 15(6):20–36

    Article  Google Scholar 

  4. Yuan G, Yang S, Mittal G (2001) Tracking control of a mobile robot using a neural dynamic based approach. In: Proceedings 2001 ICRA, IEEE International conference on robotics and automation. Seoul, South Korea, pp 163–168

    Google Scholar 

  5. Hu Y, Yang S (2003) A fuzzy neural dynamics-based tracking controller for a nonholonomic mobile robot. In: Proceedings 2003 IEEE/ASME International conference on advanced intelligent mechatronics (AIM 2003). Kobe, Japan, pp 205–210

    Google Scholar 

  6. Kanayama Y, Kimura Y, Miyazaki F et al (1990) A stable tracking control method for an autonomous mobile robot. Proceedings, IEEE International Conference on Robotics and Automation, Cincinnati, USA 1:384–389

    Article  Google Scholar 

  7. Chen B, Lee T, Chang W (1996) A robust H infinity model reference tracking design for nonholonomic mechanical control systems. Int J Control 63(2):283–306

    Article  MATH  Google Scholar 

  8. Fliess M, Levine J, Martin P, Rouchon P (2007) Flatness and defect of non-linear systems: introductory theory and examples. Int J Control 61(6):1327–1361

    Article  MathSciNet  MATH  Google Scholar 

  9. Fierro R, Lewis F (1997) Control of a nonholonomic mobile robot: back stepping kinematics into dynamics. J Robot Syst 14:149–163

    Article  MATH  Google Scholar 

  10. Fierro R, Lewis F (1998) Control of a nonholonomic mobile robot using neural networks. IEEE Trans Neural Networks 9(4):589–600

    Article  Google Scholar 

  11. Dong W, Kuhnert K (2005) Robust adaptive control of nonholonomic mobile robot with parameter and non-parameter uncertainties. IEEE Trans Rob 21(2):261–266

    Article  Google Scholar 

  12. Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16(6):609–615

    Article  Google Scholar 

  13. Dong W, Huo W, Tso S et al (2000) Tracking control of uncertain dynamic nonholonomic system and its application to wheeled mobile robots. IEEE Trans Robot Autom 16(6):870–874

    Article  Google Scholar 

  14. David J, Manivannan P (2014) Control of truck-trailer mobile robots: a survey. Intel Serv Robot 7(4):245–258

    Article  Google Scholar 

  15. Laumond J (1993) Controllability of a multibody mobile robot. IEEE Trans Robot Autom 9(6), pp 755–763

    Google Scholar 

  16. Lamiraux F, Laumond J (2000) Flatness and small-time controllability of multibody mobile robots. Application to motion planning IEEE Transactions on Automatic Control 45(10):1878–1881

    Article  MATH  Google Scholar 

  17. Laumond J, Sekhavat S, Lamiraux F (1998) Guidelines in nonholonomic motion planning for mobile robots. Robot Motion Planning and Control, Berlin, Germany: Springer-Verlag 229:1–54

    Article  MathSciNet  Google Scholar 

  18. Sordalen O (1993) Conversion of the kinematics of a car with n trailers into a chained form. IEEE Conf Robot Autom:382–387

    Google Scholar 

  19. Morin P, Samson C (2008) Transverse function control of a class of non-invariant drift less systems. Application to vehicles with trailers. In: Proceedings 47th IEEE conference on decision and control. Cancun, pp 4312–4319

    Google Scholar 

  20. Khalaji A, Moosavian S (2014) Robust adaptive controller for a tractor-trailer mobile robot. IEEE/ASME Trans Mechatron 19(3):943–953

    Article  Google Scholar 

  21. Khalaji A, Bidgoli M, Moosavian S (2014) Non-model-based control for a wheeled mobile robot towing two trailers. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 229(1):943–953

    Google Scholar 

  22. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Google Scholar 

  23. Yu X, Jiang J (2015) A survey of fault-tolerant controllers based on safety-related issues. Annu Rev Control 39:46–57

    Article  Google Scholar 

  24. Ye D, Yang G (2006) Adaptive fault-tolerant tracking control against actuator faults with application to flight control. IEEE Trans Control Syst Technol 14(6):1088–1096

    Article  Google Scholar 

  25. Fang J, Li W, Li H et al (2015) Online inverter fault diagnosis of buck-converter BLDC motor combinations. IEEE Trans Power Electron 30(5):2674–2688

    Article  MathSciNet  Google Scholar 

  26. Zhang K, Jiang B, Cocquempot V (2016) Fuzzy unknown input observer-based robust fault estimation design for discrete-time fuzzy system. Signal Processing, Elsevier 128(5):40–47

    Google Scholar 

  27. Luo M, Wang D, Pham M et al. (2005) Model-based fault diagnosis/prognosis for wheeled mobile robots: a review. In: Proceedings of 31st annual conference of IEEE industrial electronics society. pp 6–12

    Google Scholar 

  28. Uan Z, Cai Z, Yu J (2005) Fault diagnosis and fault tolerant control for wheeled mobile robots under unknown environments: a survey. In: Proceedings of the IEEE International conference on robotics and automation. pp 3428–3433

    Google Scholar 

  29. Şahin O, Dede M (2022) Model-based detection and isolation of the wheel slippage and actuator faults of a holonomic mobile robot. Industrial Robot, ahead-of-print (ahead-of-print)

    Google Scholar 

  30. Qina M, Dian S et al. (2022) Fractional-order SMC controller for mobile robot trajectory tracking under actuator fault. Syst Sci & Control Eng J 10(1)

    Google Scholar 

  31. Leite A, Schafer B, Souza M (2012) Fault-tolerant control strategy for steering failures in wheeled planetary rovers. Journal of Robotics 2012:15

    Google Scholar 

  32. Stavrou D, Eliades D, Panayiotou C et al (2016) Fault detection for service mobile robots using model-based method. Springer, Autonomous Robots 40(2):383–394

    Article  Google Scholar 

  33. Shen Z, Ma Y, Song Y (2016) Robust adaptive fault-tolerant control of mobile robots with varying center of mass. IEEE Trans Ind Electron PP (99)

    Google Scholar 

  34. Ji M, Zhang Z, Biswas G et al (2003) Hybrid fault adaptive control of a wheeled mobile robot. IEEE/ASME Trans Mechatron 8(2):226–233

    Article  Google Scholar 

  35. Chang Y, Wu C, Yang CY (2015) Adaptive output-feedback fault-tolerant tracking control for mobile robots under partial loss of actuator effectiveness. In: 2015 54th IEEE conference on decision and control. Osaka, pp 6306–6311

    Google Scholar 

  36. Dixon W, Walker I, Dawson D (2001) Fault detection for wheeled mobile robots with parametric uncertainty. In: 2001 IEEE/ASME International conference on advanced intelligent mechatronics, vol 2. pp 1245–1250

    Google Scholar 

  37. Bisgaard M, Vinther D, Østergaard K (2004) Modelling and fault-tolerant control of an autonomous wheeled robot. University of Aalbog, Institute of Control Engineering

    Google Scholar 

  38. Rotondo D, Puig V, Nejjari F et al (2014) A fault-hiding approach for the switching Quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Trans Industr Electron 62(6):3932–3944

    Google Scholar 

  39. Koh M, Noton M, Khoo S (2012) Robust fault-tolerant leader-follower control of four-wheel-steering mobile robots using terminal sliding mode. Aust J Electr Electron Eng 9(4):247–254

    Article  Google Scholar 

  40. Kim T, Park J, Kim H (2015) Actuator reconfiguration control of a robotic vehicle with four independent wheel driving. In: The 15th International conference on control, automation and systems. Busan, Korea, pp 1767–1770

    Google Scholar 

  41. Mohareri O, Daouadi R, Rad A (2012) Indirect adaptive tracking control of a nonholonomic mobile robot via neural networks. Neurocomputing 88:54–66

    Article  Google Scholar 

  42. Yang J, Kim J (1999) Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Trans Robot Autom 15(3):578–587

    Article  Google Scholar 

  43. Bushnell L, Tilbury M, Sastry S (1995) Steering three-input nonholonomic systems: the fire truck example. Int J Robot Res 14(4)

    Google Scholar 

  44. Isidori A (1989) Nonlinear control systems: an introduction, 2nd edn. Springer-Verlag New York, Inc. New York, USA

    Google Scholar 

  45. Murray R, Sastry S (1993) Nonholonomic motion planning: steering using sinusoids. IEEE Trans Autom Control 38(5):700–716

    Article  MathSciNet  MATH  Google Scholar 

  46. Murray R, Sastry S (1991) Steering nonholonomic systems in chained forms. In: Proceedings of the 30th Conference on decision and control, vol 2. Brighton, England, pp 1121–1126

    Google Scholar 

  47. Oriolo G, Luca A, Vendittelli M (2002) WMR control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transaction on Control Systems Technology 10(6):835–852

    Article  Google Scholar 

  48. Dong W, Xu W (2001) Adaptive tracking control of uncertain nonholonomic dynamic system. IEEE Trans Autom Control 46(3):450–454

    Article  MathSciNet  MATH  Google Scholar 

  49. Kuc T, Baek S, Park K (2001) Adaptive learning controller for autonomous mobile robots. IEE Proc Control Theory Appl 148(1): 49–54

    Google Scholar 

  50. Morin P, Samson C (2009) Control of nonholonomic mobile robots based on the transverse function approach. IEEE Trans Rob 25(5):1058–1073

    Article  Google Scholar 

  51. Buccieri D, Perritaz D, Mullaupt P et al (2009) Velocity-scheduling control for a unicycle mobile robot: theory and experiments. IEEE Trans Rob 25(2):451–458

    Article  Google Scholar 

  52. Dixon W, Dawson D, Zhang F et al (2000) Global exponential tracking control of a mobile robot system via a PE condition. IEEE Trans Syst Man Cybern 30(1):129–142

    Article  Google Scholar 

  53. Ortigoza R, Ortigoza G, Guzman V et al (2008) Trajectory tracking in a mobile robot without using velocity measurement for control of wheels. IEEE Latin America Transaction 6(7):598–607

    Article  Google Scholar 

  54. Jiang Z, Nijmeijer H (1999) A recursive technique for tracking control of non-holonomic systems in chained form. IEEE Trans Autom Control 44(2):265–279

    Article  MATH  Google Scholar 

  55. Huang T (2009) Adaptive tracking control of high-order nonholonomic mobile robot systems. IET Control Theory & Appl 3(6):681–690

    Google Scholar 

  56. Dixon W, Dawson D, Zargeroglu E et al (2001) Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system. IEEE Trans Syst Man Cybern 31:341–352

    Article  Google Scholar 

  57. Dixon W, Queiroz M, Dawson D et al (2004) Adaptive tracking and regulation of a wheeled mobile robot with controller/update law modularity. IEEE Trans Control Syst Technol 12(1):138–147

    Article  Google Scholar 

  58. Coelho P, Nunes U (2005) Path-following control of mobile robots in presence of uncertainties. IEEE Trans Rob 21(2):252–261

    Article  Google Scholar 

  59. Yang J, Kim J (1999) Sliding mode motion control of nonholonomic mobile robots. IEEE Control Syst 19(2):15–23

    Article  Google Scholar 

  60. Ma Y, Cocquempot V, el Najjar M, Jiang B (2017) Multi design integration based adaptive actuator failure compensation control for two linked 2WD mobile robots. IEEE/ASME Trans Mechatron 22(5):2174–2185

    Article  MATH  Google Scholar 

  61. Ma Y, Cocquempot V, El Najjar M, Jiang B (2017) Adaptive compensation of multiple actuator faults for two physically linked 2WD robots. IEEE Trans Robot PP (99):1–8

    Google Scholar 

  62. Ma Y, Cocquempot V, El Najjar M, Jiang B (2017) Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control. Int J Appl Math Comput Sci (AMCS) 27(4)

    Google Scholar 

  63. Ma Y, AL-Dujaili A, Cocquempot V, EL Najjar M (2016) An adaptive actuator failure compensation scheme for two linked 2WD mobile robots. Adv Control Diagn ACD

    Google Scholar 

  64. AL-Dujaili A, Ma Y, EL Najjar M, Cocquempot V (2017) Actuator fault compensation in three linked 2WD mobile robots using multiple dynamic controllers. IFAC WC, Toulouse

    Google Scholar 

  65. AL-Dujaili A, Cocquempot V, EL Najjar M, Ma Y (2017) Actuator fault compensation tracking control for multi linked 2WD mobile robots. In: IEEE MED 2017, 25th Mediterranean Conference on control and automation

    Google Scholar 

  66. Ryu J, Agrawal S, Franch J (2008) Motion planning and control of a tractor with a steerable trailer using differential flatness. J Comput Nonlinear Dyn 3(3)

    Google Scholar 

  67. Khalaji A, Moosavian S (2016) Dynamic modeling and tracking control of a car with trailers. Multibody SysDyn 37(2):211–225

    Article  MathSciNet  MATH  Google Scholar 

  68. Matos A (2011) Optimization and control of nonholonomic vehicles and vehicles formations. Ph.D. Thesis, University of Porto

    Google Scholar 

  69. Murray R, LI Z, Sastry S (1994) A mathematical introduction to robotic manipulation. Textbook by CRC Press. ISBN 9780849379819, p 480

    Google Scholar 

  70. Tao G, Shuhao C, Tag X, Joshi S (2004) Adaptive control of system with actuator failures. Springer, New York

    Book  MATH  Google Scholar 

  71. Liao J, Chen Z, Yao B (2017) Performance-oriented coordinated adaptive robust control for four-wheel independently driven skid steer mobile robot. IEEE Access 5:19048–19057

    Article  Google Scholar 

  72. Park S, Yoo S, Park J, Choi H (2009) "Adaptive neural sliding mode control of nonholonomic wheeled mobile robots with model uncertainty. IEEE Trans Control Syst Technol 17(1):207–214

    Article  Google Scholar 

  73. Hao X, Zheng J, Rifai C, Hung N (2021) Robust tracking control of a differential drive wheeled mobile robot using fast nonsingular terminal sliding mode. Comput & Electr Eng J 96(Part A):207–214

    Google Scholar 

  74. Labbadi M, Boubaker S, Djemai M et al. (2022) Fixed-time fractional-order global sliding mode control for nonholonomic mobile robot systems under external disturbances. Fractal Fract J 6(177)

    Google Scholar 

  75. Yang H, Guo M, Xia Y, Cheng L: Trajectory tracking for wheeled mobile robots via model predictive control with softening constraints. IET Control Theory & Appl 12(2):206–214

    Google Scholar 

  76. Al-Dujaili A, Amjad H, Pereira A, Kasim I (2021) “Adaptive backstepping control design for ball and beam system”. Int Rev Appl Sci Eng 12(3):211–221

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad Al-Dujaili .

Editor information

Editors and Affiliations

Appendices

8. Appendix

1.1 8.1. Input Transformation Matrix \({\varvec{B}}\left({\varvec{q}}\right)\)

The directions of the \(n\)-robots in the forward motion can be expressed by the following unit vectors

$$ U_{1} = \left[ {cos\theta_{1} ,sin\theta_{1} } \right]^{T} ,U_{2} = \left[ {cos\theta_{2} ,sin\theta_{2} } \right]^{T} ,....,U_{n} = \left[ {cos\theta_{n} ,sin\theta_{n} } \right]^{T} $$
(138)

where \(cos{\theta }_{i}\) and \(sin{\theta }_{1}\) (\(i=\mathrm{1,2},\cdots ,n\)) are the components in the X and Y directions, respectively.

The control force and torque vectors generated by actuators are

$$ F_{1} = \frac{{\tau_{1r} + \tau_{1l} }}{{r_{1} }}U_{1} ,F_{2} = \frac{{\tau_{2r} + \tau_{2l} }}{{r_{2} }}U_{2} ,...,F_{N} = \frac{{\tau_{nr} + \tau_{nl} }}{{r_{n} }}U_{n} $$
$$ M_{t1} = \frac{{\tau_{1r} - \tau_{1l} }}{{r_{1} }}b_{1} ,....,M_{t2} = \frac{{\tau_{2r} - \tau_{2l} }}{{r_{2} }}b_{2} ,....M_{tN} = \frac{{\tau_{nr} - \tau_{nl} }}{{r_{n} }}b_{n} $$
(139)

where, the vectors \({M}_{ti}\) (\(\mathrm{1,2},\cdots ,n\)) are oriented in the direction of Z-axis. The position vector \({r}_{p1}\) can be expressed as

$$ r_{p1} = \left( {x + \mathop \sum \limits_{i = 1}^{n} d_{i} cos\theta_{i} } \right)\hat{I} + \left( {y + \mathop \sum \limits_{i = 1}^{n} d_{i} sin\theta_{i} } \right)\hat{J},....,r_{pn} = \left[ {x,y} \right]^{T} $$
(140)

The variation in position vector \({r}_{p1}\) can be described by

$$ \delta r_{p1} = \left( {\delta x - \mathop \sum \limits_{i = 1}^{n} d_{i} sin\theta_{i} \delta \theta_{i} } \right)\hat{I} + \left( {\delta y + \mathop \sum \limits_{i = 1}^{n} d_{i} cos\theta_{i} \delta \theta_{i} } \right)\hat{J},\,\delta r_{pn} = \left[ {\delta x,\delta y} \right]^{T} $$
(141)

Also, the variation in the total work due to applied generalized forces is given by

$$ \delta W = F_{1}^{T} \delta r_{p1} + F_{2}^{T} \delta r_{p2} + \cdots + F_{N}^{T} \delta r_{pn} + M_{t1} \delta \theta_{1} + M_{t2} \delta \theta_{2} + \cdots + M_{tN} \delta \theta_{n} $$
(142)

where \({\delta r}_{p1}\), \({\delta r}_{p2}\), \(\cdots \), \({\delta r}_{pn}\) and \(\delta {\theta }_{1}\), \(\delta {\theta }_{2}\), \(\cdots \), \(\delta {\theta }_{n}\) are variations of \({r}_{p1}\), \(\cdots \), \({r}_{pn}\), and \({\theta }_{1}\), \(\cdots \), \({\theta }_{n}\). Since \(q\) is defined by \(q={\left[x,y,{\theta }_{n},{\theta }_{n-1},{\dots ,\theta }_{1}\right]}^{T}\), one can rewrite Equation (144) as follows:

$$ \begin{aligned} \delta W & = F_{1}^{T} \cdot \frac{{\partial r_{{p1}} }}{{\partial q}} \cdot \delta q + F_{2}^{T} \cdot \frac{{\partial r_{{p2}} }}{{\partial q}} \cdot \delta q + ... + F_{n}^{T} \cdot \frac{{\partial r_{{pn}} }}{{\partial q}} \cdot \delta q \\ & + M_{{t1}} \cdot \frac{{\partial \theta _{1} }}{{\partial q}} + M_{{t2}} \cdot \frac{{\partial \theta _{2} }}{{\partial q}} + ... + M_{{tn}} \cdot \frac{{\partial \theta _{n} }}{{\partial q}}Q^{T} \cdot \delta q \\ \end{aligned} $$
(143)

where \(\delta q\) represents the incremental variation of \(q\), and the vector \(Q\), which represents the generalized forces that corresponds to generalized system coordinates, can be written as,

$$ Q = \left( {\frac{{\partial r_{p1} }}{\partial q}} \right)^{T} \cdot F_{1} + \nu + \left( {\frac{{\partial r_{pn} }}{\partial q}} \right)^{T} \cdot F_{n} + \left( {\frac{{\partial \theta_{1} }}{\partial q}} \right)^{T} \cdot M_{t1} + \nu + \left( {\frac{{\partial \theta_{n} }}{\partial q}} \right)^{T} \cdot M_{tn} $$
(144)

One can define the injection matrix \(B\left(q\right)\) as

$$B\left(q\right)=\frac{\partial Q}{\partial \tau }$$
(145)

where,\(\tau \) represents the control torque vector \(\tau =\left[{\tau }_{1r},{\tau }_{1l},{\tau }_{2r},{\tau }_{2l},\cdots ,{\tau }_{nr},{\tau }_{nl}\right]\).

9. Appendix

1.1 9.2. Inertia Matrix \({\varvec{M}}\left({\varvec{q}}\right)\) and Matrix of Coriolis Forces \({\varvec{C}}\left({\varvec{q}},\dot{{\varvec{q}}}\right)\) for Robotic System

The position vectors \({C}_{1},\dots ,{C}_{n}\) can be defined by

$$ \begin{aligned} r_{{c1}} = & r_{{p1}} + a_{1} U_{1} \\ & = \left[ {x + dcos\theta _{2} + a_{1} cos\theta _{1} ,y + dsin\theta _{2} + a_{1} sin\theta _{1} } \right]^{T} \\ & r_{{cn}} = r_{{pn}} + a_{n} U_{n} = \left[ {x + a_{n} cos\theta _{n} ,y + a_{n} sin\theta _{n} } \right]^{T} \\ \end{aligned} $$
(146)

The kinematic energy of the system is defined by

$$T\left(q,\dot{q}\right)=\frac{1}{2}{\sum }_{i=0}^{n}\{{I}_{mi}{\dot{\theta }}_{i}^{2}+{m}_{i}{\dot{r}}_{ci}^{T}{\dot{r}}_{ci}\}$$
(147)

Taking the time derivative of \({r}_{c1}....,{r}_{cn}\), to have

$$ \dot{r}_{c1} = \frac{{\partial r_{c1} }}{\partial q} \cdot \dot{q} = T_{1} \cdot \dot{q},...,\dot{r}_{cn} = \frac{{\partial r_{cn} }}{\partial q} \cdot \dot{q} = T_{n} \cdot \dot{q} $$
(148)

where, the matrices, \({T}_{1},\dots ,{T}_{n}\) in (B.3) represents Jacobian matrices. Accordingly, one can rewrite the kinematic energy of robotic system as follows:

$$T\left(q,\dot{q}\right)=\frac{1}{2}{\sum }_{i=0}^{n}\{{{I}_{mi}{\dot{\theta }}_{i}^{2}+m}_{i}{\dot{q}}^{T}{{T}_{i}^{T}T}_{i}\dot{q}\}$$
(149)

where

$$M\left(q\right)=diag\left(\{\mathrm{0,0},{I}_{m1},{I}_{m2},\cdots ,{I}_{mn}\}\right)+{\sum }_{i=0}^{n}{\{m}_{i}{{T}_{i}^{T}T}_{i}\}$$
(150)

where, \(M\left(q\right)\) represents inertia matrix of robotic system, which is symmetric and positive-definite matrix.

One can proceed by writing the Lagrange formulation of the robotic system as

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right)-\frac{\partial T}{\partial q}=Q+{A}^{T}\left(q\right)\lambda $$
(151)

From (149),

$$\frac{\partial T}{\partial \dot{q}}=M\dot{q}$$
(152)

Then,

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}}\right)-\frac{\partial T}{\partial q}=\dot{M}\dot{q}+M\ddot{q}-\frac{\partial T}{\partial q}$$
$$=M\ddot{q}+C\left(q,\dot{q}\right)$$
(153)

where the centripetal Coriolis vector \(C\left(q,\dot{q}\right)\) can be expressed as

$$C\left(q,\dot{q}\right)=\dot{M}\dot{q}-\frac{\partial T}{\partial q}$$
(154)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Dujaili, A., Cocquempot, V., Najjar, M.E.B.E., Pereira, D., Humaidi, A. (2023). Adaptive Fault-Tolerant Control Design for Multi-linked Two-Wheel Drive Mobile Robots. In: Azar, A.T., Kasim Ibraheem, I., Jaleel Humaidi, A. (eds) Mobile Robot: Motion Control and Path Planning. Studies in Computational Intelligence, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-031-26564-8_10

Download citation

Publish with us

Policies and ethics