Skip to main content

Fault Diagnosis and Fault Tolerant Control for \({{n}}\)-Linked Two Wheel Drive Mobile Robots

  • Chapter
  • First Online:
Mobile Robot: Motion Control and Path Planning

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1090))

Abstract

This chapter presents Fault Diagnosis (FD) and Fault Tolerant Control (FTC) schemes for multiple physically linked mobile robots. A nonlinear dynamic observer is designed not only to estimate the actuator fault signal (to perform the Fault Diagnosis) but also to estimate the states that are needed in the feedback control law. Firstly, a system with three two-wheel drive (2WD) mobile robots subjected to multiplicative and additive actuators faults was considered. Secondly, the method was generalized for \(nth\) order mobile robots. A case study is presented by considering the problem of trajectory tracking of three physically linked 2WD mobile robots. The simulations were performed using the MATLAB/SIMULINK software, and it is shown that the nonlinear adaptive observer is suitable for the estimation of both the system state-space variables and the parameter associated with the actuator faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Verma V, Gordon G, Simmons R, Thrun S (2004) Real-time fault diagnosis [robot fault diagnosis]. IEEE Robot Autom Mag 11(2):56–66

    Article  Google Scholar 

  2. Yuan J, Sun F, Huang Y (2015) Trajectory generation and tracking control for double-steering tractor-trailer mobile robots with on-axle hitching. IEEE Trans Industr Electron 62(12):7665–7677

    Article  Google Scholar 

  3. Zhang Y, Jiang J (2008) Bibliographical review on reconfigurable fault-tolerant control systems. Annu Rev Control 32(2):229–252

    Article  Google Scholar 

  4. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and fault-tolerant control, 3rd edn. Springer, Verlag, Berlin Heidelberg

    Google Scholar 

  5. Rotondo D, Puig V, Nejjari F, Romera J (2015) A fault-hiding approach for the switching Quasi-LPV fault-tolerant control of a four-wheeled omnidirectional mobile robot. IEEE Trans Industr Electron 62(6):3932–3944

    Google Scholar 

  6. Ji M, Zhang Z, Biswas G, Sarkar N (2003) Hybrid fault adaptive control of a wheeled mobile robot. IEEE/ASME Trans Mechatron 8(2):226–233

    Article  Google Scholar 

  7. Kamel MA, Yu X, Zhang Y (2017) Fault-tolerant cooperative control design of multiple wheeled mobile robots. IEEE Transactions on Control Systems Technology, PP (99), 1–9

    Google Scholar 

  8. Rotondo D, Cristofaro A, Johansen T, Nejjari F, Puig V (2017) Diagnosis of icing and actuator faults in UAVs using LPV unknown input observers. J Intell & Robot Syst: 1–15

    Google Scholar 

  9. Blanke M, Kinnaert M, Lunze J, Staroswiecki M (2016) Diagnosis and Fault-Tolerant Control, 3rd edn. Springer-Verlag, Berlin Heidelberg

    Book  MATH  Google Scholar 

  10. Ding S (2013) “Model-Based Fault Diagnosis Techniques: Design Schemes Algorithms and Tools”, 2nd edition, series Advances in Industrial Control. Springer-Verlag, London

    Book  Google Scholar 

  11. Chen J, Patton R (2012) Robust Model-Based Fault Diagnosis for Dynamic Systems. Springer Publishing Company, Incorporated

    MATH  Google Scholar 

  12. Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN (2003) A review of process fault detection and diagnosis: Part i: Quantitative model-based methods. Comput Chem Eng 27(3):293–311

    Article  Google Scholar 

  13. Venkatasubramanian V, Rengaswamy R, Kavuri SN (2003) A review of process fault detection and diagnosis: Part ii: Qualitative models and search strategies. Comput Chem Eng 27(3):313–326

    Article  Google Scholar 

  14. Venkatasubramanian V, Rengaswamy R, Kavuri SN, Yin K (2003) A review of process fault detection and diagnosis: Part iii: Process history-based methods. Comput Chem Eng 27(3):327–346

    Article  Google Scholar 

  15. Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques - part ii: Fault diagnosis with model-based and signal-based approaches. IEEE Trans Industr Electron 62(6):3757–3767

    Article  Google Scholar 

  16. Hoang N, Kang H (2014) Model-based fault diagnosis scheme for wheeled mobile robots. Int J Control Autom Syst 12(3):637–651

    Article  Google Scholar 

  17. Zhang X, Polycarpou M, Parisini T (2002) A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Trans Autom Control 47(4):576–593

    Article  MathSciNet  MATH  Google Scholar 

  18. Skoundrianos EN, Tzafestas SG (2004) Finding fault - fault diagnosis on the wheels of a mobile robot using local model neural networks. IEEE Robot Autom Mag 11(3):83–90

    Article  Google Scholar 

  19. Fourlas GK, Karkanis S, Karras GC, Kyriakopoulos KJ (2014) Model based actuator fault diagnosis for a mobile robot. In: 2014 IEEE International Conference on Industrial Technology (ICIT). Busan, South Korea, pp 79–84

    Google Scholar 

  20. Yu M, Chen S, Xia H, Li M, Wang H (2016) Intelligent multiple-fault diagnosis of a mobile robot system in the presence of hide effect. In: 2016 IEEE International conference on mechatronics and automation. Harbin, China, pp 1572–1577

    Google Scholar 

  21. de-Gabriel JMG, Mandow A, Lozano JF, Cerezo AG (2015) Mobile robot lab project to introduce engineering students to fault diagnosis in mechatronic systems. IEEE Trans Educ 58(3):187–193

    Google Scholar 

  22. Li Z, Jiang W (2013) Active fault-tolerant control for two-wheeled differential drive mobile robot based on fault compensation method. In: 2013 Chinese automation congress. Changsha, pp 359–363

    Google Scholar 

  23. Roumeliotis SI, Sukhatme GS, Bekey GA (1998) Sensor fault detection and identification in a mobile robot. In: Proceedings. 1998 IEEE/RSJ International conference on intelligent robots and systems, innovations in theory, practice and applications, vol 3. Victoria, BC, pp 1383–1388

    Google Scholar 

  24. Stavrou D, Eliades DG, Panayiotou CG, Polycarpou M (2013) A path correction module for two-wheeled service robots under actuator faults. In: 21st Mediterranean conference on control and automation. Chania, Greece, pp 1119–1126

    Google Scholar 

  25. Christensen AL, O’Grady R, Birattari M, Dorigo M (2008) Fault detection in autonomous robots based on fault injection and learning. Auton Robot 24(1):49–67

    Article  Google Scholar 

  26. Hachemi L, Guiatni M, Nemra A (2021) Fault diagnosis and reconfiguration for mobile robot localization based on multi-sensors data fusion. World Scientific

    Google Scholar 

  27. Chen H, Ma MM, Wang H, Liu ZY, Cai ZX (2009) Moving horizon tracking control of wheeled mobile robots with actuator saturation. IEEE Trans Control Syst Technol 17(2):449–457

    Google Scholar 

  28. Akhavan S, Jamshidi M (2000) A NN-based sliding mode control for nonholonomic mobile robots. In: Proceedings of the IEEE International conference on control applications. Anchorage. pp 664–667

    Google Scholar 

  29. Martins NA, Bertol D, De Pieri ER, Castelan EB, Dias MM (2008) Neural dynamic control of a nonholonomic mobile robot incorporating the actuator dynamics. In: Proceedings of the international conference on computational intelligence for modeling control and automation. Vienna, pp 563–568

    Google Scholar 

  30. Ye J (2008) Tracking control for nonholonomic mobile robots: Integrating the analog neural network into the backstepping technique. Neurocomputing 71(16–18):3373–3378

    Article  Google Scholar 

  31. Tao G (2003) Adaptive control design and analysis. John Wiley & Sons, New Jersey

    Book  MATH  Google Scholar 

  32. Narendra KS, Balakrishnan J (1997) Adaptive control using multiple models. IEEE Trans Autom Control 42(2):171–187

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma Y, Cocquempot V, El Najjar M, Jiang B (2017) Multi design integration based adaptive actuator failure compensation control for two linked 2WD mobile robots. IEEE/ASME Trans Mechatron 22(5):2174–2185

    Article  MATH  Google Scholar 

  34. Ma Y, Cocquempot V, El Najjar M, Jiang B (2017) Adaptive compensation of multiple actuator faults for two physically linked 2WD robots. In: IEEE transactions on robotics PP (99):1–8

    Google Scholar 

  35. Ma Y, Cocquempot V, El Najjar M, Jiang B (2017) Actuator failure compensation for two linked 2WD mobile robots based on multiple-model control. Int J Appl Math Comput Sci (AMCS) 27(4)

    Google Scholar 

  36. Ma Y, AL-Dujaili A, Cocquempot V, El Najjar M (2016) An adaptive actuator failure compensation scheme for two linked 2WD mobile robots. In: Advanced Control and Diagnosis, ACD 2016. Lille

    Google Scholar 

  37. AL-Dujaili A, Ma Y, El Najjar M, Cocquempot V (2017) Actuator fault compensation in three linked 2WD mobile robots using multiple dynamic controllers. IFAC WC, Toulouse

    Google Scholar 

  38. AL-Dujaili A, Cocquempot V, El Najjar M, Ma Y (2017) Actuator fault compensation tracking control for multi linked 2WD mobile robots. In: IEEE MED 2017, 25th Mediterranean conference on control and automation. Valletta, Malta

    Google Scholar 

  39. Sørdalen OJ (1993) Conversion of the kinematics of a car with n trailers into a chained form. In: IEEE conference on robotics and automation. pp 382–387

    Google Scholar 

  40. Jiang ZP, Nijmeijer H (1999) A recursive technique for tracking control of non-holonomic systems in chained form. IEEE Trans Autom Control 44(2):265–279

    Article  MATH  Google Scholar 

  41. Fukao T, Nakagawa H, Adachi N (2000) Adaptive tracking control of a nonholonomic mobile robot. IEEE Trans Robot Autom 16(6):609–615

    Article  Google Scholar 

  42. Al-Dujaili A, Amjad H, Pereira A, Kasim I (2021) Adaptive backstepping control design for ball and beam system. Int Rev Appl Sci Eng 12(3):211–221

    Google Scholar 

  43. Hussein EQ, Al-Dujaili AQ, Ajel AR (2020, June) Design of sliding mode control for overhead crane systems. IOP conference series. Mater Sci Eng 881 Art no 012084

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayad Al-Dujaili .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Dujaili, A., Cocquempot, V., Najjar, M.E.E., Pereira, D., Humaidi, A. (2023). Fault Diagnosis and Fault Tolerant Control for \({{n}}\)-Linked Two Wheel Drive Mobile Robots. In: Azar, A.T., Kasim Ibraheem, I., Jaleel Humaidi, A. (eds) Mobile Robot: Motion Control and Path Planning. Studies in Computational Intelligence, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-031-26564-8_13

Download citation

Publish with us

Policies and ethics