Skip to main content

Fractional Order Extended State Observer Enhances the Performance of Controlled Tri-copter UAV Based on Active Disturbance Rejection Control

  • Chapter
  • First Online:
Mobile Robot: Motion Control and Path Planning

Abstract

In this chapter, an Active Disturbance Rejection Control (ADRC) is developed to trajectory tracking control of a Tricopter Unmanned Aerial Vehicle (UAV). The extended state observer (ESO) is an essential part of ADRC. The performance of ESO has direct impact on the performance of controlled system. This study addresses the design of ADRC for Tricopter UAV based on three types of extended state observers; one is the fractional order extended state observer (FOESO) and the two others are based on nonlinear extended state observer (NESO) and Super Twisting Extended State Observer (STESO). A performance comparison has been made between the observers in terms of robustness against variation of parameters and the capability to reject applied disturbance. Tunicate Swarm Algorithm Method (TSA) is used to tune the parameters of ADRC to reach minimum error in order to further improve the dynamic performance of the controlled system. Numerical simulations have been conducted to assess the effectiveness of proposed ADRC based on FOESO in the presence of uncertainty and external disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

φ :

Roll angle (rad)

θ :

Pitch angle (rad)

ψ :

Yaw angle (rad)

x :

The position of the Tricopter on x-axis (m)

y :

The position of the Tricopter on y-axis (m)

z :

The position of the Tricopter on z-axis (m)

\({\Omega }_{i}\) :

The angular speed of rotor \(i\)

\({U}_{1}\) :

Thrust force (N)

\({U}_{2}\) :

Torque about x-axis (N/m)

\({U}_{3}\) :

Torque about y-axis (N/m)

\({U}_{4}\) :

Torque about z-axis (N/m)

\({k}_{t}\) :

The drag factor

\({k}_{f}\) :

The thrust factor

\(l\) :

Distance between the center of a rotor and the center of the Tricopter.

References

  1. Najm AA, Ibraheem IK, Humaidi AJ, Azar AT (2022) Output tracking and feedback stabilization for 6-DoF UAV using an enhanced active disturbance rejection control. Int J Intell Unmanned Syst 10(4):330–345. https://doi.org/10.1108/IJIUS-09-2020-0059

    Article  Google Scholar 

  2. Kazim M, Azar AT, Koubaa A, Zaidi A (2021) Disturbance rejection based optimized robust adaptive controller for UAVs. IEEE Syst J 15(2):3097–3108. [ISI Q1, IF: 3.987]. https://doi.org/10.1109/JSYST.2020.3006059

  3. Najm AA, Ibraheem IK, Azar AT, Humaidi AJ (2020) Genetic optimization-based consensus control of multi-agent 6-DoF UAV system. Sensors 20(12):3576. https://doi.org/10.3390/s20123576

    Article  Google Scholar 

  4. Kazim M, Azar AT, Abdelkader M, Koubaa A (2022) Adaptive backstepping based linear parameter varying model predictive control multi-rotor UAVs. In: 2022 2nd international conference of smart systems and emerging technologies (SMARTTECH), May 9–11, 2022, Riyadh, Saudi Arabia, pp 166–171. https://doi.org/10.1109/SMARTTECH54121.2022.00045

  5. Azar AT, Serrano FE, Koubaa A, Ibrahim HA, Kamal NA, Khamis A, Ibraheem IK, Humaidi AJ, Precup RE (2021) Robust fractional-order sliding mode control design for UAVs subjected to atmospheric disturbances. In: Koubaa A, Azar AT (eds) Unmanned aerial systems, advances in nonlinear dynamics and Chaos (ANDC). Academic Press, pp 103–128

    Chapter  Google Scholar 

  6. Najm AA, Ibraheem IK, Azar AT, Humaidi AJ (2021) On the stabilization of 6-DOF UAV quadrotor system using modified active disturbance rejection control. In: Koubaa A, Azar AT (eds) Unmanned aerial systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 257–287

    Chapter  Google Scholar 

  7. Azar AT, Serrano FE, Kamal NA, Koubaa A (2021) Robust kinematic control of unmanned aerial vehicles with non-holonomic constraints. In: Hassanien AE, Slowik A, Snášel V, El-Deeb H, Tolba FM (eds) Proceedings of the international conference on advanced intelligent systems and informatics 2020. AISI 2020. Advances in intelligent systems and computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_74

  8. Kazim M, Azar AT, Koubaa A, Ibrahim ZF, Zaidi A, Zhang L (2021) Event-driven programming-based path planning and navigation of UAVs around a complex urban environment. In: Koubaa A, Azar AT (eds) Unmanned aerial systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 531–565

    Chapter  Google Scholar 

  9. Serrano FE, Azar AT, Kamal NA, Koubaa A, Abdelkader M (2022) Robust dynamic surface control of unmanned aerial vehicles with constrained inputs and unmodelled dynamics. In: 2022 2nd international conference of smart systems and emerging technologies (SMARTTECH), May 9–11, 2022, Riyadh, Saudi Arabia, pp 178–183. https://doi.org/10.1109/SMARTTECH54121.2022.00047

  10. Azar AT, Serrano FE, Kamal NA, Koubaa A (2021) Leader-follower control of unmanned aerial vehicles with state dependent switching. In: Hassanien AE, Slowik A, Snášel V, El-Deeb H, Tolba FM (eds) Proceedings of the international conference on advanced intelligent systems and informatics 2020. AISI 2020. Advances in intelligent systems and computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_76

  11. Sababha BH, Zu’bi HMA, Rawashdeh OA (2015) A rotor-Tilt-free Tricopter UAV: design, modelling, and stability control. Int J Mech Autom 5(2–3):107–113. https://doi.org/10.1504/IJMA.2015.075956

  12. Zou JT, Su KL, Tso H (2012) The modeling and implementation of tri-rotor flying robot. Artif Life Robot 17(1):86–91. https://doi.org/10.1007/s10015-012-0028-2

  13. Yoo D-W et al (2010) dynamic modeling and stabilization techniques for tri-rotor unmanned aerial vehicles. Int J Aeronaut Space Sci 11(3):167–174. https://doi.org/10.5139/ijass.2010.11.3.167

  14. Źrebiec J (2016) Modelling of unmanned aerial vehicle–tricopter. Automatyka/Automatics 20(1):7. https://doi.org/10.7494/automat.2016.20.1.7

  15. Han J (2009) From PID to active disturbance rejection control. IEEE Trans Ind Electron 56(3):900–906. https://doi.org/10.1109/TIE.2008.2011621

  16. Abdul-Kareem AI, Hasan AF, Al-Qassar AA, Humaidi AJ, Hassan RF, Ibraheem IK, Azar AT (2022) Rejection of wing-rock motion in delta wing aircrafts based on optimal LADRC schemes with butterfly optimization algorithm. J Eng Sci Technol 17(4):2476–2495

    Google Scholar 

  17. Toumi I, Meghni B, Hachana O, Azar AT, Boulmaiz A, Humaidi AJ, Ibraheem IK, Kamal NA, Zhu Q, Fusco G, Bahgaat NK (2022) Robust variable-step perturb-and-observe sliding mode controller for grid-connected wind-energy-conversion systems. Entropy 24:731. https://doi.org/10.3390/e24050731

    Article  MathSciNet  Google Scholar 

  18. Daraz A, Malik SA, Azar AT, Aslam S, Alkhalifah T, Alturise F (2022) Optimized fractional order integral-tilt derivative controller for frequency regulation of interconnected diverse renewable energy resources. IEEE Access 10:43514–43527. https://doi.org/10.1109/ACCESS.2022.3167811

    Article  Google Scholar 

  19. Ali T, Malik SA, Hameed IA, Daraz A, Mujlid H, Azar AT (2022) Load frequency control and automatic voltage regulation in a multi-area interconnected power system using nature-inspired computation-based control methodology. Sustainability 14(19):12162. https://doi.org/10.3390/su141912162

  20. Abdul-Adheem WR, Ibraheem IK, Azar AT, Humaidi AJ (2021) Design and analysis of a novel generalized continuous tracking differentiator. Ain Shams Eng J 13(4):101656

    Google Scholar 

  21. Sain C, Banerjee A, Biswas PK, Azar AT, Babu TS (2022) Design and optimisation of a fuzzy-PI controlled modified inverter-based PMSM drive employed in a light weight electric vehicle. Int J Autom Control 16(3/4):459–488

    Article  Google Scholar 

  22. Ali MO, Abou-Loukh SJ, Al-Dujaili AQ, Alkhayyat A, Abdulkareem AI, Ibraheem IK, Humaidi AJ, Al-Qassar AA, Azar AT (2022) Radial basis function neural networks-based short term electric power load forecasting for super high voltage power grid. J Eng Sci Technol 17(1):0361–0378

    Google Scholar 

  23. Ajel AR, Humaidi AJ, Ibraheem IK, Azar AT (2021) Robust model reference adaptive control for tail-sitter VTOL aircraft. Actuators 10:162. https://doi.org/10.3390/act10070162

    Article  Google Scholar 

  24. Drhorhi I, El Fadili A, Berrahal C, Lajouad R, El Magri A, Giri F, Azar AT, Vaidyanathan S (2021) Adaptive backstepping controller for DFIG-based wind energy conversion system. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 235–260

    Google Scholar 

  25. Daraz A, Malik SA, Waseem A, Azar AT, Haq IU, Ullah Z, Aslam S (2021) Automatic generation control of multi-source interconnected power system using FOI-TD controller. Energies 14(18):5867. https://doi.org/10.3390/en14185867

    Article  Google Scholar 

  26. Pilla R, Gorripotu TS, Azar AT (2021) Tuning of extended Kalman filter using grey wolf optimisation for speed control of permanent magnet synchronous motor drive. Int J Autom Control 15(4–5):563–584

    Google Scholar 

  27. Humaidi AJ, Najem HT, Al-Dujaili AQ, Pereira DA, Ibraheem IK, Azar AT (2021) Social spider optimization algorithm for tuning parameters in PD-like Interval Type-2 Fuzzy Logic Controller applied to a parallel robot. Meas Control 54(3–4):303–323. https://doi.org/10.1177/0020294021997483

  28. Abdul-Adheem W, Ibraheem IK, Humaidi AJ, Azar AT (2021) Model-free active input-output feedback linearization of a single-link flexible joint manipulator: an improved active disturbance rejection control approach. Meas Control 54(5–6):856–871. https://doi.org/10.1177/0020294020917171

  29. Pilla R, Gorripotu TS, Azar AT (2021) Design and analysis of search group algorithm based PD-PID controller plus redox flow battery for automatic generation control problem. Int J Comput Appl Technol 66(1):19–35

    Article  Google Scholar 

  30. Al-Qassar AA, Al-Dujaili AQ, Hasan AF, Humaidi AJ, Ibraheem IK, Azar AT (2021) Stabilization of single-axis propeller-powered system for aircraft applications based on optimal adaptive control design. J Eng Sci Technol (JESTEC) 16(3):1851–1869

    Google Scholar 

  31. Abdul-Adheem WR, Ibraheem IK, Azar AT, Humaidi AJ (2020) Improved active disturbance rejection-based decentralized control for MIMO nonlinear systems: comparison with the decoupled control scheme. Appl Sci 10(7):2515. https://doi.org/10.3390/app10072515

  32. Liu L, Ma D, Azar AT, Zhu Q (2020) Neural computing enhanced parameter estimation for multi-input and multi-output total nonlinear dynamic models. Entropy 22(5):510. https://doi.org/10.3390/e22050510

    Article  Google Scholar 

  33. Kammogne AST, Kountchou MN, Kengne R, Azar AT, Fotsin HB, Ouagni STM (2020) Polynomial robust observer implementation based-passive synchronization of nonlinear fractional-order systems with structural disturbances. Front Inf Technol Electron Eng 21(9):1369–1386

    Google Scholar 

  34. Djeddi A, Dib D, Azar AT, Abdelmalek S (2019) Fractional order unknown inputs fuzzy observer for Takagi-Sugeno systems with unmeasurable premise variables. Mathematics 7(10):984. https://doi.org/10.3390/math7100984

    Article  Google Scholar 

  35. Pilla R, Azar AT, Gorripotu TS (2019) Impact of flexible ac transmission system devices on automatic generation control with a metaheuristic based fuzzy PID controller. Energies 12(21):4193. https://doi.org/10.3390/en12214193

  36. Ammar HH, Azar AT, Shalaby R, Mahmoud MI (2019) Metaheuristic optimization of fractional order incremental conductance (FO-INC) maximum power point tracking (MPPT). Complexity 2019:1–13. Article ID 7687891. https://doi.org/10.1155/2019/7687891

  37. Radwan AG, Emira AA, Abdelaty A, Azar AT (2018) Modeling and analysis of fractional order DC-DC converter. ISA Trans 82(2018):184–1991

    Article  Google Scholar 

  38. Meghni B, Dib D, Azar AT, Saadoun A (2018) Effective supervisory controller to extend optimal energy management in hybrid wind turbine under energy and reliability constraints. Int J Dyn Control 6(1):369–383. https://doi.org/10.1007/s40435-016-0296-0. Springer

  39. Meghni B, Dib D, Azar AT (2017) A second-order sliding mode and fuzzy logic control to Optimal Energy Management in PMSG Wind Turbine with Battery Storage. Neural Comput Appl 28(6):1417–1434. https://doi.org/10.1007/s00521-015-2161-z

    Article  Google Scholar 

  40. Fekik A, Denoun H, Azar AT, Kamal NA, Zaouia M, Benyahia N, Hamida ML, Benamrouche N, Vaidyanathan S (2021) Direct power control of three-phase PWM-rectifier with backstepping control. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 215–234

    Google Scholar 

  41. Humaidi AJ, Sadiq ME, Abdulkareem AI, Ibraheem IK, Azar AT (2022) Adaptive backstepping sliding mode control design for vibration suppression of earth-quaked building supported by magneto-rheological damper. J Low Freq Noise Vib Act Control 41(2):768–783. https://doi.org/10.1177/14613484211064659

  42. Vaidyanathan S, Jafari S, Pham VT, Azar AT, Alsaadi FE (2018) A 4-D chaotic hyperjerk system with a hidden attractor, adaptive backstepping control and circuit design. Arch Control Sci 28(2):239–254

    Google Scholar 

  43. Pham VT, Vaidyanathan S, Azar AT, Duy VH (2021) A new chaotic system without linear term, its backstepping control, and circuit design. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 33–52

    Google Scholar 

  44. Vaidyanathan S, Pham VT, Azar AT (2021) A new chaotic jerk system with egg-shaped strange attractor, its dynamical analysis, backstepping control, and circuit simulation. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 53–71

    Google Scholar 

  45. Sambas A, Vaidyanathan S, Zhang S, Mohamed MA, Zeng Y, Azar AT (2021) A new 4-D chaotic hyperjerk system with coexisting attractors, its active backstepping control, and circuit realization. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 73–94

    Google Scholar 

  46. Sambas A, Vaidyanathan S, Zhang S, Mohamed MA, Zeng Y, Azar AT (2021) A new 3-D chaotic jerk system with a saddle-focus rest point at the origin, its active backstepping control, and circuit realization. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 95–114

    Google Scholar 

  47. Vaidyanathan S, Sambas A, Azar AT, Rana KPS, Kumar V (2021) A new 5-D hyperchaotic four-wing system with multistability and hidden attractor, its backstepping control, and circuit simulation. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 115–138

    Google Scholar 

  48. Vaidyanathan S, Sambas A, Azar AT, Rana KPS, Kumar V (2021) A new 4-D hyperchaotic temperature variations system with multistability and strange attractor, bifurcation analysis, its active backstepping control, and circuit realization. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 139–164

    Google Scholar 

  49. Alimi M, Rhif A, Rebai A, Vaidyanathan S, Azar AT (2021) Optimal adaptive backstepping control for chaos synchronization of nonlinear dynamical systems. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 291–345

    Google Scholar 

  50. Kumar V, Rana KPS, Azar AT, Vaidyanathan S (2021) Backstepping controller for nonlinear active suspension system. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 347–374

    Google Scholar 

  51. Bansal N, Bisht A, Paluri S, Kumar V, Rana KPS, Azar AT, Vaidyanathan S (2021) Single-link flexible joint manipulator control using backstepping technique. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 375–406

    Google Scholar 

  52. Singh S, Mathpal S, Azar AT, Vaidyanathan S, Kamal NA (2021) Multi-switching synchronization of nonlinear hyperchaotic systems via backstepping control. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 425–447

    Google Scholar 

  53. Vaidyanathan S, Sambas A, Azar AT (2021) A 5-D hyperchaotic dynamo system with multistability, its dynamical analysis, active backstepping control, and circuit simulation. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 449–471

    Google Scholar 

  54. Sambas A, Vaidyanathan S, Azar AT, Hidayat Y, Gundara G, Mohamad MA (2021) A novel chaotic system with a closed curve of four quarter-circles of equilibrium points: dynamics, active backstepping control, and electronic circuit implementation. In: Backstepping control of nonlinear dynamical systems, advances in nonlinear dynamics and chaos (ANDC). Academic Press, pp 485–507

    Google Scholar 

  55. Ali ZA et al (2016) Attitude and altitude control of trirotor UAV by using adaptive hybrid controller. J Control Sci Eng. https://doi.org/10.1155/2016/6459891

  56. Prach A, Kayacan E (2018) An MPC-based position controller for a tilt-rotor tricopter VTOL UAV. Optim Control Appl Methods 39(1):343–356. https://doi.org/10.1002/oca.2350

  57. Nam KJ, Joung J, Har D (2020) Tri-copter UAV with individually tilted main wings for flight maneuvers. IEEE Access, 8:46753–46772. https://doi.org/10.1109/ACCESS.2020.2978578

  58. Song Z et al (2017) Modeling and maneuvering control for tricopter based on the back-stepping method. In: CGNCC 2016-2016 IEEE Chinese guidance, navigation and control conference, (rotor 1), pp 889–894. https://doi.org/10.1109/CGNCC.2016.7828903

  59. Tran HK et al (2019) Adaptive fuzzy control method for a single tilt tricopter. IEEE Access 7:161741–161747. https://doi.org/10.1109/ACCESS.2019.2950895

  60. Yoon S et al. (2013) Design and flight test of small tri-rotor unmanned vehicle with LQR based onboard attitude control system. INter

    Google Scholar 

  61. Zhang Y et al (2018) A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerosp Sci Technol 79:601–609. https://doi.org/10.1016/j.ast.2018.06.017

  62. Tran HK, Chiou JS, Peng ST (2016) Design Genetic Algorithm Optimization education software based fuzzy controller for a tricopter fly path planning. Eurasia J Math Sci Technol Educ 12(5):1303–1312. https://doi.org/10.12973/eurasia.2016.1514a

  63. Mohamed MK, Lanzon A (2012) Design and control of novel tri-rotor UAV. In: Proceedings of the 2012 UKACC international conference on control, CONTROL 2012, September, pp 304–309. https://doi.org/10.1109/CONTROL.2012.6334647.

  64. Humaidi AJ, Badr HM (2018) Linear and nonlinear active disturbance rejection controllers for single-link flexible joint robot manipulator based on PSO tuner. J Eng Sci Technol Rev 11(3):133–138. https://doi.org/10.25103/jestr.113.18

  65. Humaidi AJ, Badr HM, Ajil AR (2018) Design of active disturbance rejection control for single-link flexible joint robot manipulator. In: 2018 22nd international conference on system theory, control and computing, ICSTCC 2018-Proceedings, pp 452–457. https://doi.org/10.1109/ICSTCC.2018.8540652

  66. Yang Y et al (2014) Mechanical analysis and modeling for tricopter. Appl Mech Mater 455:304–309. https://doi.org/10.4028/www.scientific.net/AMM.455.304

  67. Huang Y, Xue W (2014) Active disturbance rejection control: methodology and theoretical analysis. ISA Trans 53(4):963–976. https://doi.org/10.1016/j.isatra.2014.03.003

  68. Humaidi AJ, Badr HM, Hameed AH (2018) PSO-based active disturbance rejection control for position control of magnetic levitation system. In: 2018 5th international conference on control, decision and information technologies, CoDIT 2018, pp 922–928. https://doi.org/10.1109/CoDIT.2018.8394955

  69. Azar AT, Radwan AG and Vaidyanathan S (2018) Fractional order systems: optimization, control, circuit realizations and applications. Elsevier. ISBN: 9780128161524

    Google Scholar 

  70. Azar AT, Radwan AG, Vaidyanathan S (2018) Mathematical techniques of fractional order systems. Elsevier. ISBN: 9780128135921

    Google Scholar 

  71. Abed AM, Rashid ZN, Abedi F, Zeebaree SRM, Sahib MA, Mohamad Jawad AJ, Redha Ibraheem GA, Maher RA, Abdulkareem AI, Ibraheem IK, Azar AT, Al-khaykan A (2022) Trajectory tracking of differential drive mobile robots using fractional-order proportional-integral-derivative controller design tuned by an enhanced fruit fly optimization. Meas Control.https://doi.org/10.1177/00202940221092134

  72. Ghoudelbourk S, Azar AT, Dib D, Rechach A (2022) Fractional order control of switched reluctance motor. Int J Adv Intell Paradig 21(3/4):247–266. https://doi.org/10.1504/IJAIP.2018.10024488

    Article  Google Scholar 

  73. Shalaby R, Ammar HH, Azar AT, Mahmoud MI (2021) Optimal Fractional-Order Fuzzy-MPPT for solar water pumping system. J Intell Fuzzy Syst 40(1):1175–1190. https://doi.org/10.3233/JIFS-201538

    Article  Google Scholar 

  74. Ghoudelbourk S, Azar AT, Dib D (2021) Three-level (NPC) shunt active power filter based on fuzzy logic and fractional-order PI controller. Int J Autom Control 15(2):149–169

    Article  Google Scholar 

  75. Ibraheem GAR, Azar AT, Ibraheem IK, Humaidi AJ (2020) A novel design of a neural network based fractional PID controller for mobile robots using hybridized fruit fly and particle swarm optimization, complexity, vol 2020, pp 1–18. Article ID: 3067024. https://doi.org/10.1155/2020/3067024

  76. Khennaoui AA, Ouannas A, Boulaaras S, Pham VT, Azar AT (2020) A fractional map with hidden attractors: chaos and control. Eur Phys J Spec Top 229:1083–1093

    Article  Google Scholar 

  77. Kammogne AST, Kountchou MN, Kengne R, Azar AT, Fotsin HB, Ouagni STM (2020) Polynomial robust observer implementation based-passive synchronization of nonlinear fractional-order systems with structural disturbances. Front Inf Technol Electron Eng 21(9):1369–1386

    Article  Google Scholar 

  78. Alain KST, Azar AT, Kengne R, Bertrand FH (2020) Stability analysis and robust synchronisation of fractional-order modified Colpitts oscillators. Int J Autom Control (IJAAC) 14(1):52–79

    Article  Google Scholar 

  79. Ouannas A, Azar AT, Ziar T (2020) Fractional inverse full state hybrid projective synchronisation. Int J Adv Intell Paradig 17(3–4):270–298

    MATH  Google Scholar 

  80. Tolba MF, AbdelAty AM, Soliman NS, Said LA, Madian AH, Azar AT, Radwan AG (2017) FPGA implementation of two fractional order chaotic systems. Int J Electron Commun 28(2017):162–172

    Article  Google Scholar 

  81. Ouannas A, Azar AT, Vaidyanathan S (2017) A robust method for new fractional hybrid chaos synchronization. Math Methods Appl Sci 40(5):1804–1812. https://doi.org/10.1002/mma.4099

    Article  MathSciNet  MATH  Google Scholar 

  82. Ouannas A, Azar AT, Vaidyanathan S (2017) A new fractional hybrid chaos synchronization. Int J Model Identif Control 27(4):314–322

    Google Scholar 

  83. Ghoudelbourk S, Dib D, Omeiri A, Azar AT (2016) MPPT Control in wind energy conversion systems and the application of fractional control (PIα) in pitch wind turbine. Int J Model Identif Control (IJMIC) 26(2):140–151

    Google Scholar 

  84. Rana KPS, Kumar V, Sehgal N, George S, Azar AT (2021) Efficient maximum power point tracking in fuel cell using the fractional-order PID controller. In: Advances in nonlinear dynamics and chaos (ANDC), renewable energy systems. Academic Press, pp 111–132. https://doi.org/10.1016/B978-0-12-820004-9.00017-6

  85. Fekik A, Azar AT, Kamal NA, Denoun H, Almustafa KM, Hamida ML, Zaouia M (2021) Fractional-order control of a fuel cell-boost converter system. In: Hassanien A, Bhatnagar R, Darwish A (eds) Advanced machine learning technologies and applications. AMLTA 2020. Advances in intelligent systems and computing, vol 1141. Springer, Singapore, pp 713–724

    Google Scholar 

  86. Ouannas A, Grassi G, Azar AT, Khennaoui AA (2021) Synchronization control in fractional discrete-time systems with chaotic hidden attractors. In: Hassanien A, Bhatnagar R, Darwish A (eds) Advanced machine learning technologies and applications. AMLTA 2020. Advances in intelligent systems and computing, vol 1141, Springer, Singapore, pp 661–669

    Google Scholar 

  87. Mittal S, Azar AT, Kamal NA (2021) Nonlinear fractional order system synchronization via combination-combination multi-switching. In: Hassanien AE, Slowik A, Snášel V, El-Deeb H, Tolba FM (eds) Proceedings of the international conference on advanced intelligent systems and informatics 2020. AISI 2020. Advances in intelligent systems and computing, vol 1261. Springer, Cham. https://doi.org/10.1007/978-3-030-58669-0_75

  88. Ammar H, Ibrahim M, Azar AT, Shalaby R (2020) Gray wolf optimization of fractional order control of 3-omni wheels mobile robot: experimental study. In: 2020 16th international computer engineering conference (ICENCO), 29–30 Dec 2020, Cairo, Egypt, pp 147–152. https://doi.org/10.1109/ICENCO49778.2020.9357384

  89. Singh S, Azar AT (2020) Multi-switching combination synchronization of fractional order chaotic systems. In: Hassanien AE, Azar A, Gaber T, Oliva D, Tolba F (eds) Proceedings of the international conference on artificial intelligence and computer vision (AICV2020). AICV 2020. Advances in intelligent systems and computing, vol 1153, Springer, Cham, pp 655–664

    Google Scholar 

  90. Khennaoui AA, Ouannas A, Grassi G, Azar AT (2020) Dynamic analysis of a fractional map with hidden attractor. In: Hassanien AE, Azar A, Gaber T, Oliva D, Tolba F (eds) Proceedings of the international conference on artificial intelligence and computer vision (AICV2020). AICV 2020. Advances in intelligent systems and computing, vol 1153, Springer, Cham, pp 731–739

    Google Scholar 

  91. Ammar HH, Azar AT (2020) Robust path tracking of mobile robot using fractional order PID controller. In: The international conference on advanced machine learning technologies and applications (AMLTA2019). AMLTA 2019. Advances in intelligent systems and computing, vol 921. Springer, pp 370–381

    Google Scholar 

  92. Khan A, Singh S, Azar AT (2020) Synchronization between a novel integer-order hyperchaotic system and a fractional-order hyperchaotic system using tracking control. In: The international conference on advanced machine learning technologies and applications (AMLTA2019). AMLTA 2019. Advances in intelligent systems and computing, vol 921. Springer, Cham, pp 382–391

    Google Scholar 

  93. Khan A, Singh S, Azar AT (2020) Combination-combination anti-synchronization of four fractional order identical hyperchaotic systems. In: The international conference on advanced machine learning technologies and applications (AMLTA2019). AMLTA 2019. Advances in intelligent systems and computing, vol 921. Springer, Cham, pp 406–414

    Google Scholar 

  94. Ouannas A, Grassi G, Azar AT (2020) A new generalized synchronization scheme to control fractional chaotic systems with non-identical dimensions and different orders. In: The international conference on advanced machine learning technologies and applications (AMLTA2019). AMLTA 2019. Advances in intelligent systems and computing, vol 921. Springer, Cham, pp 415–424

    Google Scholar 

  95. Ouannas A, Grassi G, Azar AT (2020) Fractional-order control scheme for Q-S chaos synchronization. In: The international conference on advanced machine learning technologies and applications (AMLTA2019). AMLTA 2019. Advances in intelligent systems and computing, vol 921. Springer, Cham, pp 434–441

    Google Scholar 

  96. Ouannas A, Grassi G, Azar AT, Khennaouia AA, Pham VT (2020) Chaotic control in fractional-order discrete-time systems. AISI 2019. In: The international conference on advanced intelligent systems and informatics AISI 2019. Advances in intelligent systems and computing, vol 1058, Springer, pp 207–217

    Google Scholar 

  97. Ouannas A, Grassi G, Azar AT, Khennaouia AA, Pham VT (2020) Synchronization of fractional-order discrete-time chaotic systems. In: The international conference on advanced intelligent systems and informatics AISI 2019. Advances in intelligent systems and computing, vol 1058. Springer, pp 218–228

    Google Scholar 

  98. Fekik A, Denoun H, Azar AT, Koubaa A, Kamal NA, Zaouia M, Hamida ML, Yassa N (2020) Adapted fuzzy fractional order proportional-integral controller for DC motor. In: The first international conference of smart systems and emerging technologies (SMART TECH 2020), November 3–5, 2020, Riyadh, Saudi Arabia, pp 1–6. https://doi.org/10.1109/SMART-TECH49988.2020.00019

  99. Gorripotu TS, Samalla H, Jagan Mohana Rao C, Azar AT, Pelusi D (2019) TLBO algorithm optimized fractional-order PID controller for AGC of interconnected power system. In: Nayak J, Abraham A, Krishna B, Chandra Sekhar G, Das A (eds) Soft computing in data analytics. Advances in intelligent systems and computing, vol 758. Springer, Singapore

    Google Scholar 

  100. Ouannas A, Grassi G, Azar AT, Singh S (2019) New control schemes for fractional chaos synchronization. In: Proceedings of the international conference on advanced intelligent systems and informatics 2018. AISI 2018. Advances in intelligent systems and computing, vol 845. Springer, Cham

    Google Scholar 

  101. Kumar J, Azar AT, Kumar V, Rana KPS (2018) Design of fractional order fuzzy sliding mode controller for nonlinear complex systems. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series, Elsevier, pp 249–282

    Google Scholar 

  102. Singh S, Azar AT, Vaidyanathan S, Ouannas A, Bhat MA (2018). Multiswitching synchronization of commensurate fractional order hyperchaotic systems via active control. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series, Elsevier, pp 319–345

    Google Scholar 

  103. AbdelAty AM, Azar AT, Vaidyanathan S, Ouannas A, Radwan AG (2018) Applications of continuous-time fractional order chaotic systems. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series. Elsevier, pp 409–449

    Google Scholar 

  104. Pham VT, Gokul PM, Kapitaniak T, Volos C, Azar AT (2018) Dynamics, synchronization and fractional order form of a chaotic system with infinite equilibria. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series, Elsevier, pp 475–502

    Google Scholar 

  105. Shukla MK, Sharma BB, Azar AT (2018) Control and synchronization of a fractional order hyperchaotic system via backstepping and active backstepping approach. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series. Elsevier, pp 597–624

    Google Scholar 

  106. Khettab K, Bensafia Y, Bourouba B, Azar AT (2018) Enhanced fractional order indirect fuzzy adaptive synchronization of uncertain fractional chaotic systems based on the variable structure control: robust H? Design approach. In: Mathematical techniques of fractional order systems, advances in nonlinear dynamics and chaos (ANDC) series. Elsevier, pp 559–595

    Google Scholar 

  107. Alain KST, Romanic K, Azar AT, Vaidyanathan S, Bertrand FH, Adele NM (2018) Dynamics analysis and synchronization in relay coupled fractional order Colpitts oscillators. In: Advances in system dynamics and control. IGI-Global, USA, pp 317–356. https://doi.org/10.4018/978-1-5225-4077-9.ch011

  108. Pham VT, Vaidyanathan S, Volos CK, Azar AT, Hoang TM, Yem VV (2017) A three-dimensional no-equilibrium chaotic system: analysis, synchronization and its fractional order form. Studies in computational intelligence, vol 688. Springer, Germany, pp 449–470

    Google Scholar 

  109. Meghni B, Dib D, Azar AT, Ghoudelbourk S, Saadoun A (2017) Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage. Studies in computational intelligence, vol 688. Springer, Germany, pp 165–202

    Google Scholar 

  110. Lamamra K, Azar AT, Ben Salah C (2017) Chaotic system modelling using a neural network with optimized structure. Studies in computational intelligence, vol 688, Springer, Germany, pp 833–856

    Google Scholar 

  111. Ouannas A, Azar AT, Ziar T and Vaidyanathan S (2017) On new fractional inverse matrix projective synchronization schemes. Studies in computational intelligence, vol 688. Springer, Germany, pp 497–524

    Google Scholar 

  112. Ouannas A, Azar AT, Ziar T, Vaidyanathan S (2017) Fractional inverse generalized chaos synchronization between different dimensional systems. Studies in computational intelligence, vol 688. Springer, Germany, pp 525–551

    Google Scholar 

  113. Ouannas A, Azar AT, Ziar T, Vaidyanathan S (2017) A new method to synchronize fractional chaotic systems with different dimensions. Studies in computational intelligence, vol 688, Springer, Germany, pp 581–611

    Google Scholar 

  114. Ouannas A, Azar AT, Ziar T, Radwan AG (2017) A study on coexistence of different types of synchronization between different dimensional fractional chaotic systems. Studies in computational intelligence, vol 688, Springer, Germany, pp 637–669

    Google Scholar 

  115. Ouannas A, Azar AT, Ziar T, Radwan AG (2017) Generalized synchronization of different dimensional integer-order and fractional order chaotic systems. Studies in computational intelligence, vol 688. Springer, Germany, pp 671–697

    Google Scholar 

  116. Pham VT, Volos CK, Vaidyanathan S, Azar AT (2017) Dynamics, synchronization and fractional order form of a chaotic system without equilibrium. In: Volos CK (ed) Nonlinear systems: design, applications and analysis. Nova Science Publishers

    Google Scholar 

  117. Soliman NS, Said LA, Azar AT, Madian AH, Radwan AG, Ouannas A (2017). Fractional controllable multi-scroll V-shape attractor with parameters effect. In: The 6th international conference on modern circuits and systems technologies (MOCAST), 4–6 May 2017, Thessaloniki Greece

    Google Scholar 

  118. Boulkroune A, Bouzeriba A., Bouden T, Azar AT (2016) Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. Studies in fuzziness and soft computing, vol 337. Springer, Germany, pp 681–697

    Google Scholar 

  119. Ouannas A, Azar AT, Radwan AG (2016) On inverse problem of generalized synchronization between different dimensional integer-order and fractional-order chaotic systems. In: The 28th international conference on microelectronics, IEEE, December 17–20, 2016, Cairo, Egypt. https://doi.org/10.1109/ICM.2016.7847942

  120. Zhonghua M (2008) Tracking differentiator in the application of signal processing and theory research. In: Proceedings-2008 international seminar on future biomedical information engineering, FBIE 2008, vol 57(1), pp 382–384. https://doi.org/10.1109/FBIE.2008.57

  121. Huang J et al (2020) Research on position servo system based on fractional-order extended state observer. IEEE Access 8:102748–102756. https://doi.org/10.1109/ACCESS.2020.2997407

  122. Fareh R (2019) Control of a single flexible link manipulator using fractional active disturbance rejection control. In: 2019 6th international conference on control, decision and information technologies, CoDIT 2019, pp 900–905. https://doi.org/10.1109/CoDIT.2019.8820708

  123. Wang C et al (2016) Design of PID and ADRC based quadrotor helicopter control system. In: Proceedings of the 28th Chinese control and decision conference, CCDC 2016, pp 5860–5865. https://doi.org/10.1109/CCDC.2016.7532046

  124. Shi DF et al (2021) A novel active disturbance rejection control with a super-twisting observer for the rocket launcher servo system. Shock Vib. https://doi.org/10.1155/2021/6617599

  125. Alawad NA, Humaidi AJ, Al-Araji AS (2022) Improved active disturbance rejection control for the knee joint motion model. Math Model Eng Probl 9(2):477–483. https://doi.org/10.18280/mmep.090225

  126. Peng C et al (2013) ADRC trajectory tracking control based on PSO algorithm for a quad-rotor. In: Proceedings of the 2013 IEEE 8th conference on industrial electronics and applications, ICIEA 2013, pp 800–805. https://doi.org/10.1109/ICIEA.2013.6566476

  127. Kaur S et al (2020) Tunicate Swarm Algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng Appl Artif Intell 90(February):103541. https://doi.org/10.1016/j.engappai.2020.103541

  128. Sharma A et al (2021) Parameter extraction of photovoltaic module using tunicate swarm algorithm. Electronics (Switzerland) 10(8)https://doi.org/10.3390/electronics10080878

  129. Raheema SJ, Saleh MH (2021) An experimental research on design and development diversified controllers for tri-copter stability comparison. In: IOP conference series: materials science and engineering, vol 1105(1), pp 012019. https://doi.org/10.1088/1757-899x/1105/1/012019

  130. Al-Qassar AA, Abdulkareem AI et al (2021) Grey-Wolf optimization better enhances the dynamic performance of roll motion for tail-sitter VTOL aircraft guided and controlled by STSMC. J Eng Sci Technol 16(3):1932–1950

    Google Scholar 

  131. Al-Qassar AA, Al-Obaidi ASM et al (2021) Finite-time control of wing-rock motion for delta wing aircraft based on whale-optimization algorithm. Indones J Sci Technol 6(3):441–456. https://doi.org/10.17509/ijost.v6i3.37922

  132. Waheed ZA, Humaidi AJ (2022) Design of optimal sliding mode control of elbow wearable exoskeleton system based on whale optimization algorithm. Journal Européen des Systèmes

    Google Scholar 

  133. Humaidi AJ, Hasan AF (2019) Particle swarm optimization–based adaptive super-twisting sliding mode control design for 2-degree-of-freedom helicopter. Meas Control (United Kingdom), 52(9–10):1403–1419. https://doi.org/10.1177/0020294019866863

Download references

Acknowledgements

The authors would like to thank Prince Sultan University, Riyadh, Saudi Arabia for supporting this work. Special acknowledgement to Automated Systems & Soft Computing Lab (ASSCL), Prince Sultan University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amjad J. Humaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hasan, A.F. et al. (2023). Fractional Order Extended State Observer Enhances the Performance of Controlled Tri-copter UAV Based on Active Disturbance Rejection Control. In: Azar, A.T., Kasim Ibraheem, I., Jaleel Humaidi, A. (eds) Mobile Robot: Motion Control and Path Planning. Studies in Computational Intelligence, vol 1090. Springer, Cham. https://doi.org/10.1007/978-3-031-26564-8_14

Download citation

Publish with us

Policies and ethics