Skip to main content

Extended Future in Testing Semantics for Time Petri Nets

  • Chapter
  • First Online:
Concurrency, Specification and Programming

Abstract

Dense-Time Petri Nets (TPNs) are a widely-accepted model suitable for qualitative and quantitative modeling and verifying safety-critical, computer-controlled, and real-time systems. Testing equivalences used to compare the behavior (processes) of systems and reduce their structure are defined in terms of tests that processes may or must pass. The intention of the paper is to present a framework for developing, studying and comparing testing equivalences with extended tests (extended future) in interleaving, partial order, and causal tree semantics in the context of safe TPNs (transitions are labeled with time firing intervals, can fire only if their lower time bounds are attained and must fire when their upper time bounds are reached). Additionally, we establish, for the whole class of TPNs and their various subclasses, relationships between testing equivalences and other equivalences from the interleaving—partial order and linear time—branching time spectra. This allows studying in complete detail the timing behavior, in addition to the degrees of relative concurrency and nondeterminism of processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The alternative definition of (ii): for all \(1\le i < j\le k\) it holds: \(\bigcup _{1\le l \le i} e_{l}\) is a downward-closed and timely sound subset of \(\bigcup _{1\le m \le j} e_{l}\).

  2. 2.

    A (labeled over Act) time poset (partially ordered set) is a tuple \(\eta =(X,\preceq ,\lambda ,\tau )\) consisting of a finite set X of elements; a reflexive, antisymmetric and transitive relation \(\preceq \); a labeling function \(l:X\rightarrow Act\); and a timing function \(\tau : X \rightarrow \mathbb {T}\) such that \(x\preceq x'\Rightarrow \tau (x)\le \tau (x')\).

  3. 3.

    Notice that in \(\mathcal{C}\mathcal{T}({\mathcal{T}\mathcal{N}})\), for any vertex \(\sigma \in V\), there is a unique path starting from the root and finishing in \(\sigma \).

  4. 4.

    \(\mathcal {F}(\mathcal {L}^*_{po}({\mathcal{T}\mathcal{N}})\), \(\mathcal {L}^*_{po}({\mathcal{T}\mathcal{N}}'))= \{f:TP\rightarrow TP'\mid \) f is a mapping, \([TP]_{\simeq } \in \mathcal {L}^*_{po}({\mathcal{T}\mathcal{N}})\), \([TP']_{\simeq } \in \mathcal {L}^*_{po}({\mathcal{T}\mathcal{N}}') \}\).

References

  1. Andreeva, M., Virbitskaite, I.: Observational equivalences for timed stable event structures. Fundam. Inf. 72(1–3), 1–19 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Aura, T., Lilius, J.: A causal semantics for time Petri nets. Theor. Comput. Sci. 243(1–2), 409–447 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. BĂ©rard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the expressiveness of timed automata and time Petri nets. In: Pettersson, P., Yi, W. (eds.) Formal Modeling and Analysis of Timed Systems. FORMATS 2005. Lecture Notes in Computer Science, vol. 3829, pp. 211–225. Springer, Berlin (2005). https://doi.org/10.1007/11603009_17

  4. Best, E., Devillers, R., Kiehn, A., Pomello, L.: Concurrent bisimulations in Petri Nets. Acta Inf. 28(3), 231–264 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bihler, E., Vogler, W.: Timed Petri nets: efficiency of asynchronous systems. In: Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. SFM-RT 2004. Lecture Notes in Computer Science, vol. 3185, pp. 25–58. Springer, Berlin (2004). https://doi.org/10.1007/978-3-540-30080-9_2

  6. Boyer, M., Roux, O.H.: On the compared expressiveness of arc, place and transition time Petri nets. Fundam. Inf. 88(3), 225–249 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Bozhenkova, E., Virbitskaite, I.: Testing equivalences of time Petri nets. Program Comput. Softw. 46(4), 251–260 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bushin, D., Virbitskaite, I.: Comparative trace semantics of time Petri nets. Program Comput. Softw. 41(3), 131–139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Darondeau, Ph., Degano, P.: Refinement of actions in event structures and causal trees. Theor. Comput. Sci. 118(1), 21–48 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. van Glabbeek, R.J.: The linear time—branching time spectrum I: the semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier (2001)

    Google Scholar 

  11. van Glabbeek, R.J., Goltz, U., Schicke, J.-W.: On causal semantics of Petri nets. In: Katoen, JP., König, B. (eds.) CONCUR 2011—Concurrency Theory. CONCUR 2011. Lecture Notes in Computer Science, vol. 6901, pp. 43–59. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-23217-6_4

  12. Goltz, U., Wehrheim, H.: Causal testing. In: Penczek, W., Szalas, A. (eds.) Mathematical Foundations of Computer Science. MFCS 1996. Lecture Notes in Computer Science, vol. 1113, pp. 394–406. Springer, Berlin (1996). https://doi.org/10.1007/3-540-61550-4_165

  13. Merlin, P., Faber, D.J.: Recoverability of communication protocols-implications of a theoretical study. IEEE Trans. Commun. 24(9), 1036–1043 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Nicola, R.: Behavioral equivalences. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp. 120–127. Springer, Boston, MA (2011)

    Google Scholar 

  15. De Nicola, R., Hennessy, M.: Testing equivalence for processes. Theor. Comput. Sci. 34, 83–133 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Behavioural notions for elementary net systems. Distrib. Comput. 4(1), 45–57 (1990)

    Article  MathSciNet  Google Scholar 

  17. Pomello, L., Rozenberg, G., Simone, C.: A Survey of equivalence notions for net based systems. In: Rozenberg, G. (ed.) Advances in Petri Nets. Lecture Notes in Computer Science, vol. 609, pp. 410–472. Springer, Berlin (1992). https://doi.org/10.1007/3-540-55610-9_180

  18. Rabinovich, A., Trakhtenbrot, B.A.: Behavior structures and nets. Fundam. Inf. 11, 357–404 (1988)

    Google Scholar 

  19. Tarasyuk, I.V.: Equivalences for behavioural analysis of concurrent and distributed computing systems. “Geo” Publisher, Novosibirsk (2007) (in Russian)

    Google Scholar 

  20. Vogler, W.: Modular construction and partial order semantics of Petri nets. Lecture Notes in Computer Science, vol. 625. Springer, Berlin (1992)

    Google Scholar 

  21. Virbitskaite, I., Bushin, D., Best, E.: True concurrent equivalences in time Petri net. Fundam. Inf. 149(4), 401–418 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Bozhenkova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bozhenkova, E., Virbitskaite, I. (2023). Extended Future in Testing Semantics for Time Petri Nets. In: Schlingloff, BH., Vogel, T., Skowron, A. (eds) Concurrency, Specification and Programming. Studies in Computational Intelligence, vol 1091. Springer, Cham. https://doi.org/10.1007/978-3-031-26651-5_4

Download citation

Publish with us

Policies and ethics