Skip to main content

An Infinity of Intuitionistic Connexive Logics

  • Conference paper
  • First Online:
Logic and Its Applications (ICLA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13963))

Included in the following conference series:

Abstract

We develop infinitely many intuitionistic connexive logics \(\textsf{C}_{m,n}\) with \(m> 0\) and \(n\ge 0\) which are obtained from intuitionistic propositional logic by adding the negation sign \(\sim \) which admits principles of connexive implication and \({\sim }^{2m+n}p \leftrightarrow {\sim }^n p\). We introduce \(\langle m,n \rangle \)-connexive logics and show that lattices of these connexive logics are isomorphic to lattices of superintuitionistic logics. Furthermore, we give cut-free G3-style sequent calculi for \(\langle m,n \rangle \)-connexive logics.

This work was supported by Chinese National Funding of Social Sciences (Grant no. 18ZDA033).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berman, J.: Distributive lattices with an additional unary operation. Aequationes Math. 16, 165–171 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chagrov, A., Zakharyaschev, M.: Modal Logic. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  3. Cornejo, J.M., Sankappanavar, H.P.: A logic for dually hemimorphic semi-Heyting algebras and its axiomatic extensions. Bull. Section Logic (2022, to appear)

    Google Scholar 

  4. Fazio, D., Ledda, A., Paoli, F.: Intuitionistic logic is a connexive logic. arXiv:2208.14715v1 [math.LO] (2022)

  5. Humberstone, L.: Contra-classical logics. Australas. J. Philos. 78(4), 438–474 (2000)

    Article  Google Scholar 

  6. Kamide, N.: Paraconsistent double negations as classical and intuitionistic negations. Stud. Logica 105(6), 1167–1191 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kamide, N.: Kripke-completeness and cut-elimination theorems for intuitionistic paradefinite logics with and without quasi-explosion. J. Philos. Log. 49(6), 1185–1212 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kamide, N., Wansing, H.: Connexive modal logic based on positive S4. Logic without Frontiers. Festschrift for Walter Alexandre Carnielli on the Occasion of His 60th Birthday, pp. 389–409. College Publications, London (2011)

    Google Scholar 

  9. Kamide, N., Wansing, H.: Proof theory of Nelson’s paraconsistent logic: a uniform perspective. Theor. Comput. Sci. 415, 1–38 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kamide, N., Wansing, H.: Proof Theory of N4-Related Paraconsistent Logics. College Publications, London (2015)

    MATH  Google Scholar 

  11. Ma, M., Lin, Y.: Countably many weakenings of Belnap-Dunn logic. Stud. Logica 108, 163–198 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Malinowski, J., Palczewski, R.: Relating semantics for connexive logic. In: Giordani, A., Malinowski, J. (eds.) Logic in High Definition. TL, vol. 56, pp. 49–65. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53487-5_4

    Chapter  MATH  Google Scholar 

  13. McCall, S.: Non-classical Propositional Calculi. Ph.D thesis, University of Oxford (1964)

    Google Scholar 

  14. McCall, S.: Connexive implication. J. Symbolic Log. 31(3), 415–433 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. McCall, S.: A history of connexivity. In: Gabbay, D.M., Pelletier, F.J., Woods, J. (eds.) Handbook of the History of Logic, vol. 11, pp. 415–449. Elsevier (2012)

    Google Scholar 

  16. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press (2001)

    Google Scholar 

  17. Odinstov, S.: Constructive Negations and Paraconsistency. Springer, Heidelberg (2008). https://doi.org/10.1007/978-1-4020-6867-6

    Book  Google Scholar 

  18. Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40220-8_8

    Chapter  Google Scholar 

  19. Omori, H., Wansing, H.: On contra-classical variants of Nelson logic N4 and its classical extension. Rev. Symbolic Log. 11(4), 805–820 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Omori, H., Wansing, H.: 40 years of FDE: an introductory overview. Stud. Logica 105(6), 1021–1049 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Omori, H., Wansing, H.: Connexive logics: an overview and current trends. Logic Log. Philos. 28(3), 371–387 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Priest, G.: Negation as cancellation, and connexive logic. Topoi 18(2), 141–148 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Routley, R.: Semantics for connexive logics. I. Studia Logica 37(4), 393–412 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wansing, H.: Connexive modal logic. In: Schmidt, R., Pratt-Hartmann, I., Reynolds, M., Wansing, H. (eds.) Advances in Modal Logic, vol. 5, pp. 367–383. King’s College Publications, London (2004)

    MATH  Google Scholar 

  25. Wansing, H.: Negation. In: Goble, L. (eds.) The Blackwell Guide to Philosophical Logic, pp. 415–436. Blackwell Publishers Ltd. (2001)

    Google Scholar 

  26. Wansing, H., Skurt, D.: Negation as cancellation, connexive logic, and qLPm. Australas. J. Log. 15(2), 476–488 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Ma .

Editor information

Editors and Affiliations

Appendices

Appendix

A Proof of Lemma 11

Proof

Assume \(c(\varphi )=0\). Suppose \(\varphi =p\). If \(k<2m+n\), then \({\sim }^k p,\varGamma \Rightarrow {\sim }^k p\) is an instance of \(\mathrm {(Id)}\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Obviously \(\vdash {\sim }^l p,\varGamma \Rightarrow {\sim }^l p\). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k p,\varGamma \Rightarrow {\sim }^k p\). Suppose \(\varphi =\bot \). If \(k<2m+n\), then \({\sim }^k \bot ,\varGamma \Rightarrow {\sim }^k \bot \) is an instance of \(\mathrm {(\bot \!\!\Rightarrow )}\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Then \(\vdash {\sim }^l \bot ,\varGamma \Rightarrow {\sim }^l \bot \). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k\bot ,\varGamma \Rightarrow {\sim }^k\bot \). Assume \(c(\varphi )>0\). Suppose \(k\ge 2m+n\). There exist \(l\in [0,2m+n)\) and \(r\ge 1\) with \(k=2rm+l\). Clearly \(c({\sim }^l\varphi )<c({\sim }^k\varphi )\). By induction hypothesis, \(\vdash {\sim }^l\varphi ,\varGamma \Rightarrow {\sim }^l\varphi \). By \(({{\sim }^{2m+n}}{\Rightarrow })\) and \(({\Rightarrow }{{\sim }^{2m+n}})\), \(\vdash {\sim }^k\varphi ,\varGamma \Rightarrow {\sim }^k\varphi \). Suppose \(k<2m+n\). Assume \(\varphi =\varphi _1\wedge \varphi _2\). Let \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\) with \(e\in E[0,2m+n)\). Clearly \(c({\sim }^e\varphi _1)<c({\sim }^e(\varphi _1\wedge \varphi _2))\) and \(c({\sim }^e\varphi _2)<c({\sim }^e(\varphi _1\wedge \varphi _2))\). By induction hypothesis, \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \) \(\Rightarrow {\sim }^e\varphi _1\) and \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow {\sim }^e\varphi _2\). By \(({\Rightarrow }\wedge )\), \(\vdash {\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow {\sim }^e(\varphi _1\wedge \varphi _2)\). By \((\wedge {\Rightarrow })\), \(\vdash {\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow {\sim }^e(\varphi _1\wedge \varphi _2)\). Now let \(\varphi ={\sim }^o(\varphi _1\wedge \varphi _2)\) with \(o\in O[0,2m+n)\). Clearly, \(c({\sim }^o\varphi _1)<c({\sim }^o(\varphi _1\wedge \varphi _2))\) and \(c({\sim }^o\varphi _2)<c({\sim }^o(\varphi _1\wedge \varphi _2))\). By induction hypothesis, \(\vdash {\sim }^o\varphi _1,\varGamma \Rightarrow {\sim }^o\varphi _1\) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow {\sim }^o\varphi _2\). By \(({\Rightarrow }{\sim }{\wedge })\), \(\vdash {\sim }^o\varphi _1,\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\). By \(({\sim }{\wedge }{\Rightarrow })\), \(\vdash {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow {\sim }^o(\varphi _1\wedge \varphi _2)\). The case \(\varphi =\varphi _1\vee \varphi _2\) is shown similarly. Suppose \(\varphi = \varphi _1\rightarrow \varphi _2\). Clearly \(c(\varphi _1)<c({\sim }^k (\varphi _1\rightarrow \varphi _2))\) and \(c(\varphi _2)<c({\sim }^k (\varphi _1\rightarrow \varphi _2))\). By induction hypothesis, \(\vdash \varphi _1,{\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1\) and \(\vdash \varphi _1,{\sim }^k \varphi _2,\varGamma \) \(\Rightarrow {\sim }^k \varphi _2\). By \(({\rightarrow }{\Rightarrow })\), \(\vdash \varphi _1,{\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow {\sim }^k \varphi _2\). By \(({\Rightarrow }{\rightarrow })\), \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow {\sim }^k (\varphi _1\rightarrow \varphi _2)\).    \(\square \)

B Proof of Lemma 14

Proof

Assume \(\vdash _h\varphi ,\varphi ,\varGamma \Rightarrow \psi \). The proof proceeds by induction on h and subinduction on the complexity \(c(\varphi )\). The case \(h=0\) is trivial. Suppose \(h>0\) and \(\varphi ,\varphi ,\varGamma \Rightarrow \psi \) is obtained by a rule (R). Suppose \(\varphi \) is not principal in (R). Then \(\vdash \varphi ,\varGamma \Rightarrow \psi \) by induction hypothesis and (R). For example, let (R) be \(\mathrm {(\Rightarrow \wedge )}\) with premisses \(\vdash _{h-1}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e\psi _1 \) and \( \vdash _{h-1}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e\psi _2\), and conclusion \(\vdash _{h}\varphi ,\varphi ,\varGamma \Rightarrow {\sim }^e(\psi _1\wedge \psi _2)\). By induction hypothesis, \(\vdash _{h-1}\varphi ,\varGamma \Rightarrow {\sim }^e\psi _1\) and \(\vdash _{h-1}\varphi ,\varGamma \Rightarrow {\sim }^e\psi _2\). By \(\mathrm {(\Rightarrow \wedge )}\), \(\vdash _h\varphi , \varGamma \Rightarrow {\sim }^e(\psi _1\wedge \psi _2)\). Other cases are shown similarly. Suppose \(\varphi \) is principal in (R). Assume \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\). Let (R) end with premiss \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \) and conclusion \(\vdash _h{\sim }^e(\varphi _1\wedge \varphi _2),{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). By Lemma 13 (1), \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,{\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash _{h-1}{\sim }^e\varphi _1,{\sim }^e\varphi _2,\varGamma \Rightarrow \psi \). By \(({\wedge }{\Rightarrow })\), \(\vdash _h{\sim }^e(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^o(\varphi _1\wedge \varphi _2)\). Let (R) end with premisses \(\vdash {\sim }^o\varphi _1, {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \) and \( \vdash {\sim }^o\varphi _2, {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \), and conclusion \(\vdash _h{\sim }^o(\varphi _1\wedge \varphi _2),{\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). By Lemma 13 (4), \(\vdash {\sim }^o\varphi _1, {\sim }^o\varphi _1,\varGamma \Rightarrow \psi \) and \(\vdash {\sim }^o\varphi _2, {\sim }^o\varphi _2,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^o\varphi _1, \varGamma \Rightarrow \psi \) and \(\vdash {\sim }^o\varphi _2,\varGamma \Rightarrow \psi \). By \(({\sim }{\wedge }{\Rightarrow })\), \(\vdash _h {\sim }^o(\varphi _1\wedge \varphi _2),\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^e(\varphi _1\vee \varphi _2)\) or \({\sim }^o(\varphi _1\vee \varphi _2)\). The proof is similar to previous cases. Assume \(\varphi ={\sim }^{2m+n}\chi \). Let (R) end with premiss \(\vdash {\sim }^n\chi ,{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \) and conclusion \(\vdash _{h}{\sim }^{2m+n}\chi ,{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \). By Lemma 13 (5), \(\vdash {\sim }^n\chi ,{\sim }^n\chi ,\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^n\chi ,\varGamma \Rightarrow \psi \). By \(({\sim }^{2m+n}{\Rightarrow })\), \(\vdash _h{\sim }^{2m+n}\chi ,\varGamma \Rightarrow \psi \). Assume \(\varphi ={\sim }^k(\varphi _1\rightarrow \varphi _2)\). Let (R) end with premisses \(\vdash {\sim }^k(\varphi _1\rightarrow \varphi _2),{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1 \) and \( \vdash {\sim }^k\varphi _2,\varGamma \Rightarrow \psi \), and conclusion \(\vdash _{h}{\sim }^k(\varphi _1\rightarrow \varphi _2),{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \psi \). By induction hypothesis, \(\vdash {\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \varphi _1\). By premiss and \(\mathrm {(\rightarrow \Rightarrow )}\), \(\vdash _h{\sim }^k(\varphi _1\rightarrow \varphi _2),\varGamma \Rightarrow \psi \).    \(\square \)

C Proof of Theorem 6

Proof

Assume \(\vdash _h\varGamma \Rightarrow \varphi \) and \(\vdash _j\varphi ,\varDelta \Rightarrow \psi \). We show \(\vdash \varGamma ,\varDelta \Rightarrow \psi \) by simultaneous induction on the cut height \(h+j\) and the complexity \(c(\varphi )\). Assume \(h=0\) or \(j=0\). Suppose \(h=0\). Suppose \(\varGamma \Rightarrow \varphi \) is an instance of \(\mathrm {(Id)}\). Then \(\varphi \in \varGamma \). By \(\vdash \varphi ,\varDelta \Rightarrow \psi \) and \(\mathrm {(Wk)}\), \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). If \(\bot \in \varGamma \), then \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). Suppose \(j=0\). Let \(\varphi ,\varDelta \Rightarrow \psi \) be an instance of \(\mathrm {(Id)}\). If \(\varphi =\psi \), by \(\vdash \varGamma \Rightarrow \varphi \) and \((\textrm{Wk})\), \(\vdash \varGamma ,\varDelta \Rightarrow \varphi \). Let \(\varphi ,\varDelta \Rightarrow \psi \) be an instance of \(\mathrm {(\bot )}\). If \(\bot \in \varDelta \), then \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). If \(\varphi =\bot \), by \(\vdash \varGamma \Rightarrow \bot \), Lemma 15 and \((\textrm{Wk})\), \(\vdash \varGamma ,\varDelta \Rightarrow \psi \). Now assume \(h,j>0\). Let the premisses of \(\mathrm {(Cut)}\) be obtained by the rules \(\mathrm {(R1)}\) and \(\mathrm {(R2)}\) respectively. Suppose \(\varphi \) is not principal in \(\mathrm {(R1)}\). Then \(\mathrm {(R1)}\) is a left rule. We apply \(\mathrm {(Cut)}\) to the premiss(es) of \(\mathrm {(R1)}\) and \(\varphi ,\varDelta \Rightarrow \psi \), and then apply \((\textrm{R1})\). Suppose \(\varphi \) is not principal in \(\mathrm {(R2)}\). We apply \(\mathrm {(Cut)}\) to \(\varGamma \Rightarrow \varphi \) and the premiss(es) of \(\mathrm {(R2)}\), and then apply \(\mathrm {(R2)}\). Suppose \(\varphi \) is principal in both \(\mathrm {(R1)}\) and \(\mathrm {(R2)}\). The proof proceeds by induction on \(c(\varphi )\). We have the following cases:

(1) \(\varphi ={\sim }^e(\varphi _1\wedge \varphi _2)\) and the derivations end with

$$ \frac{\varGamma \Rightarrow {\sim }^e \varphi _1 \quad \varGamma \Rightarrow {\sim }^e \varphi _2}{\varGamma \Rightarrow {\sim }^e (\varphi _1\wedge \varphi _2)}{({\Rightarrow }\wedge )} \quad \frac{{\sim }^e \varphi _1,{\sim }^e \varphi _2,\varDelta \Rightarrow \psi }{{\sim }^e (\varphi _1\wedge \varphi _2),\varDelta \Rightarrow \psi }{(\wedge {\Rightarrow })} $$

By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, we have

figure a

(2) \(\varphi ={\sim }^e (\varphi _1\vee \varphi _2)\) and the derivations end with

$$ \frac{\varGamma \Rightarrow {\sim }^e\varphi _i}{\varGamma \Rightarrow {\sim }^e (\varphi _1\vee \varphi _2)}{({\Rightarrow }{\vee })}{(i=1,2)} \quad \frac{{\sim }^e\varphi _1,{\sim }^e\varphi _2,\varDelta \Rightarrow \psi }{{\sim }^e (\varphi _1\vee \varphi _2),\varDelta \Rightarrow \psi }{({\vee }{\Rightarrow })} $$

By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, and by (Ctr), we obtain \(\varGamma ,\varDelta \Rightarrow \psi \).

(3) \(\varphi ={\sim }^o (\varphi _1\wedge \varphi _2)\) or \({\sim }^o (\varphi _1\vee \varphi _2)\). The proof is similar to (1) or (2).

(4) \(\varphi ={\sim }^k (\varphi _1\rightarrow \varphi _2)\) and the derivations end with

$$ \frac{\varphi _1,\varGamma \Rightarrow {\sim }^k \varphi _2}{\varGamma \Rightarrow {\sim }^k (\varphi _1\rightarrow \varphi _2)} ~(\mathrm {\Rightarrow \rightarrow }) \quad \frac{{\sim }^k (\varphi _1\rightarrow \varphi _2),\varDelta \Rightarrow \varphi _1 \quad {\sim }^k \varphi _2,\varDelta \Rightarrow \psi }{{\sim }^k (\varphi _1\rightarrow \varphi _2),\varDelta \Rightarrow \psi }{({\rightarrow }{\Rightarrow })} $$

By applying \(\mathrm {(Cut)}\) to sequents with cut formula of less complexity, we have \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma ,\varDelta ,\varDelta \Rightarrow \psi \). By \((\textrm{Ctr})\), \(\vdash {\sim }^k (\varphi _1\rightarrow \varphi _2),\varGamma ,\varDelta \Rightarrow \psi \).

(5) \(\varphi ={\sim }^{2m+n} \psi \) and the derivations end with

$$ \frac{\varGamma \Rightarrow {\sim }^{n} \psi }{\varGamma \Rightarrow {\sim }^{2m+n} \psi }{({\Rightarrow }{{\sim }^{2m+n}})} \quad \frac{{\sim }^{n} \psi ,\varDelta \Rightarrow \chi }{{\sim }^{2m+n} \psi ,\varDelta \Rightarrow \chi }{({{\sim }^{2m+n}}{\Rightarrow })} $$

By applying \(\mathrm {(Cut)}\) to premisses, we get \(\vdash \varGamma ,\varDelta \Rightarrow \chi \).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Ma, M. (2023). An Infinity of Intuitionistic Connexive Logics. In: Banerjee, M., Sreejith, A.V. (eds) Logic and Its Applications. ICLA 2023. Lecture Notes in Computer Science, vol 13963. Springer, Cham. https://doi.org/10.1007/978-3-031-26689-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26689-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26688-1

  • Online ISBN: 978-3-031-26689-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics