Abstract
Context awareness is critical for the successful execution of processes. In the abundance of business process management (BPM) research, frameworks exclusively devoted to extracting context from textual process data are scarce. With the deluge of textual data and its increasing value for organizations, it becomes essential to employ relevant text analytics techniques to increase the awareness of process workers, which is important for process execution. The present paper addresses this demand by developing a framework for context awareness based on process executions-related textual data using a well-established layered BPM context model. This framework combines and maps various text analytics techniques to the layers of the context model, aiming to increase the context awareness of process workers and facilitate informed decision-making. The framework is applied in an IT ticket processing case study. The findings show that contextual information obtained using our framework enriches the awareness of process workers regarding the process instance urgency, complexity, and upcoming tasks and assists in making decisions in terms of these aspects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The overview of the studies and literature search process can be found on the Github page.
References
Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5
Rosemann, M., Recker, J., Flender, C.: Contextualization of business processes. Int. J. Bus. Process. Integr. Manag. 3, 47–60 (2008)
vom Brocke, J., Schmiedel, T., Recker, J., Trkman, P., Mertens, W., Viaene, S.: Ten principles of good business process management. Bus. Process. Manag. J. 20, 530–548 (2014)
Avgerou, C.: Contextual explanation: alternative approaches and persistent challenges. MIS Q. 43, 977–1006 (2019)
Sundermann, C.V., de Pádua, R., Tonon, V.R., Domingues, M.A., Rezende, S.O.: A context-aware recommender method based on text mining. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 385–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30244-3_32
Song, R., Vanthienen, J., Cui, W., Wang, Y., Huang, L.: Context-aware BPM using IoT-integrated context ontologies and IoT-enhanced decision models. In: IEEE Conference on Business Informatics. pp. 541–550. IEEE (2019)
Whetten, D.A.: An examination of the interface between context and theory applied to the study of chinese organizations. Manag. Organ. Rev. 5, 29–55 (2009)
Johns, G.: The essential impact of context on organizational behavior. Acad. Manag. Rev. 31, 386–408 (2006)
Pentland, B.T., Recker, J., Wolf, J.R., Wyner, G.: Bringing context inside process research with digital trace data. J. Assoc. Inform. Syst. 21(5), 1214–1236 (2020)
Müller, O., Junglas, I., Debortoli, S., vom Brocke, J.: Using text analytics to derive customer service management benefits from unstructured data. MIS Q. Exec. 15, 243–258 (2016)
Hoang, H.H., Jung, J.J.: An ontological framework for context-aware collaborative business process formulation. Comput. Informatics. 33, 553–569 (2014)
Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 300–317. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_17
Rizun, N., Revina, A., Meister, V.G.: Assessing business process complexity based on textual data: Evidence from ITIL IT ticket processing. Bus. Process Manag. J. 27(7), 1966–1998 (2021). https://doi.org/10.1108/BPMJ-04-2021-0217
Paas, F., Sweller, J., Paas, F., Sweller, J.: An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educ. Psychol. Rev. 24, 27–45 (2011)
vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process management. Int. J. Inf. Manage. 36, 486–495 (2016)
Zelt, S., Recker, J., Schmiedel, T., vom Brocke, J.: A theory of contingent business process management. Bus. Process. Manag. J. 25, 1291–1316 (2019)
Weber, M., Grisold, T., vom Brocke, J., Kamm, M.: Context-aware business process modeling: empirical insights from a project with a globally operating company. In: European Conference on Information Systems. AIS, Marrakesh, Morocco (2021)
Rosemann, M., Recker, J.: Context-aware process design: exploring the extrinsic drivers for process flexibility. In: Workshop on Business Process Modeling, Development, and Support at CAiSE, pp. 149–158. CEUR, Luxembourg (2006)
Zelt, S., Recker, J., Schmiedel, T., vom Brocke, J.: Development and validation of an instrument to measure and manage organizational process variety. PLoS ONE 13, e0206198 (2018)
vom Brocke, J., Baier, M.-S., Schmiedel, T., Stelzl, K., Röglinger, M., Wehking, C.: Context-aware business process management. Bus. Inf. Syst. Eng. 63(5), 533–550 (2021). https://doi.org/10.1007/s12599-021-00685-0
Boukadi, K., Chaabane, A., Vincent, L.: Context-aware business processes modelling: concepts, issues and framework. IFAC Proc. Volumes 42(4), 1376–1381 (2009). https://doi.org/10.3182/20090603-3-RU-2001.0291
Enrique, H.V., De Maio, C., Fenza, G., Loia, V., Orciuoli, F.: A context-aware fuzzy linguistic consensus model supporting innovation processes. In: IEEE International Conference on Fuzzy Systems. pp. 1685–1692. IEEE (2016)
Mounira, Z., Mahmoud, B.: Context-aware process mining framework for business process flexibility. In: International Conference on Information Integration and Web-Based Applications and Services, pp. 421–426 (2010)
Hidri, W., M’tir, R.H., Bellamine, N., Saoud, B., Ghedira-Guegan, C.: A meta-model for context-aware adaptive business process as a service in collaborative cloud environment. Procedia Comput. Sci. 164, 177–186 (2019). https://doi.org/10.1016/j.procs.2019.12.170
Graesser, A.C., McNamara, D.S., Kulikowich, J.M.: Coh-metrix: providing multilevel analyses of text characteristics. Educ. Res. 40, 223–234 (2011)
Dinh, L.T.N., Karmakar, G., Kamruzzaman, J.: A survey on context awareness in big data analytics for business applications. Knowl. Inf. Syst. 62(9), 3387–3415 (2020). https://doi.org/10.1007/s10115-020-01462-3
Purnomo, F., Heryadi, Y., Gaol, F.L., Ricky, M.Y.: Smart city’s context awareness using social media. In: International Conference on ICT for Smart Society, pp. 119–123. IEEE (2016)
Cartelli, V., Di Modica, G., Tomarchio, O.: A cost-centric model for context-aware simulations of business processes. In: International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp. 303–314. SciTePress (2015)
Daelemans, W.: Explanation in computational stylometry. In: Gelbukh, A. (ed.) CICLing 2013. LNCS, vol. 7817, pp. 451–462. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37256-8_37
Anastassiu, M., Santoro, F.M., Recker, J., Rosemann, M.: The quest for organizational flexibility: driving changes in business processes through the identification of relevant context. Bus. Process. Manag. J. 22, 763–790 (2016)
Ploesser, K., Recker, J., Rosemann, M.: Building a methodology for context-aware business processes: insights from an exploratory case study. In: European Conference on Information Systems IT to Empower, pp. 1–12. University of Pretoria, South Africa (2010)
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)
Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling – a research agenda. Inf. Syst. Res. 13, 363–376 (2002)
Axelos: ITIL® Service Transition. TSO, London (2011)
Rizun, N., Revina, A., Meister, V.: Method of decision-making logic discovery in the business process textual data. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 353, pp. 70–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20485-3_6
Rizun, N., Revina, A.: Business sentiment analysis. concept and method for perceived anticipated effort identification. In: Information Systems Development: Information Systems Beyond 2020, pp. 1–12. AIS eLibrary (2019)
Grossnickle, J., Raskin, O.: The Handbook of Online Marketing Research: Knowing Your Customer Using the Net. McGraw-Hill Education (2000)
Beigi, G., Hu, X., Maciejewski, R., Liu, H.: An overview of sentiment analysis in social media and its applications in disaster relief. In: Pedrycz, W., Chen, S.-M. (eds.) Sentiment Analysis and Ontology Engineering. SCI, vol. 639, pp. 313–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30319-2_13
Medelyan, O., Witten, I.H., Divoli, A., Broekstra, J.: Automatic construction of lexicons, taxonomies, ontologies, and other knowledge structures. Wiley Interdisc. Rev.: Data Min. Know. Discovery 3, 257–279 (2013)
Hammer, H., Yazidi, A., Bai, A., Engelstad, P.: Building domain specific sentiment lexicons combining information from many sentiment lexicons and a domain specific corpus. In: Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E.J., Wrembel, R. (eds.) CIIA 2015. IAICT, vol. 456, pp. 205–216. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19578-0_17
Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 8(1), 216–225 (2014). https://doi.org/10.1609/icwsm.v8i1.14550
Blei, D.: Probabilistic topic models. Commun. ACM 55, 77–84 (2012)
Eppler, M.J., Seifried, P., Röpnack, A.: Improving knowledge intensive processes through an enterprise knowledge medium. In: Conference on Managing Organizational Knowledge for Strategic Advantage: The Key Role of Information Technology and Personnel. pp. 222–230. Gabler (1999)
Rizun, N., Revina, A., Meister, V.G.: Analyzing content of tasks in Business Process Management. Blending task execution and organization perspectives. Comput. Ind. 130, 103463 (2021)
Wright, A.P., Wright, A.T., McCoy, A.B., Sittig, D.F.: The use of sequential pattern mining to predict next prescribed medications. J. Biomed. Inform. 53, 73–80 (2015)
Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) pervasive computing, pp. 167–180. Springer Berlin Heidelberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45866-2_14
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Revina, A., Rizun, N., Aksu, Ü. (2023). Towards a Framework for Context Awareness Based on Textual Process Data: Case Study Insights. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022 Workshops . EDOC 2022. Lecture Notes in Business Information Processing, vol 466. Springer, Cham. https://doi.org/10.1007/978-3-031-26886-1_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-26886-1_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26885-4
Online ISBN: 978-3-031-26886-1
eBook Packages: Computer ScienceComputer Science (R0)