Skip to main content

Towards a Framework for Context Awareness Based on Textual Process Data: Case Study Insights

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing. EDOC 2022 Workshops (EDOC 2022)

Abstract

Context awareness is critical for the successful execution of processes. In the abundance of business process management (BPM) research, frameworks exclusively devoted to extracting context from textual process data are scarce. With the deluge of textual data and its increasing value for organizations, it becomes essential to employ relevant text analytics techniques to increase the awareness of process workers, which is important for process execution. The present paper addresses this demand by developing a framework for context awareness based on process executions-related textual data using a well-established layered BPM context model. This framework combines and maps various text analytics techniques to the layers of the context model, aiming to increase the context awareness of process workers and facilitate informed decision-making. The framework is applied in an IT ticket processing case study. The findings show that contextual information obtained using our framework enriches the awareness of process workers regarding the process instance urgency, complexity, and upcoming tasks and assists in making decisions in terms of these aspects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The overview of the studies and literature search process can be found on the Github page.

References

  1. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business Process Management. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-33143-5

    Book  Google Scholar 

  2. Rosemann, M., Recker, J., Flender, C.: Contextualization of business processes. Int. J. Bus. Process. Integr. Manag. 3, 47–60 (2008)

    Article  Google Scholar 

  3. vom Brocke, J., Schmiedel, T., Recker, J., Trkman, P., Mertens, W., Viaene, S.: Ten principles of good business process management. Bus. Process. Manag. J. 20, 530–548 (2014)

    Article  Google Scholar 

  4. Avgerou, C.: Contextual explanation: alternative approaches and persistent challenges. MIS Q. 43, 977–1006 (2019)

    Article  Google Scholar 

  5. Sundermann, C.V., de Pádua, R., Tonon, V.R., Domingues, M.A., Rezende, S.O.: A context-aware recommender method based on text mining. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11805, pp. 385–396. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30244-3_32

    Chapter  Google Scholar 

  6. Song, R., Vanthienen, J., Cui, W., Wang, Y., Huang, L.: Context-aware BPM using IoT-integrated context ontologies and IoT-enhanced decision models. In: IEEE Conference on Business Informatics. pp. 541–550. IEEE (2019)

    Google Scholar 

  7. Whetten, D.A.: An examination of the interface between context and theory applied to the study of chinese organizations. Manag. Organ. Rev. 5, 29–55 (2009)

    Google Scholar 

  8. Johns, G.: The essential impact of context on organizational behavior. Acad. Manag. Rev. 31, 386–408 (2006)

    Article  Google Scholar 

  9. Pentland, B.T., Recker, J., Wolf, J.R., Wyner, G.: Bringing context inside process research with digital trace data. J. Assoc. Inform. Syst. 21(5), 1214–1236 (2020)

    Google Scholar 

  10. Müller, O., Junglas, I., Debortoli, S., vom Brocke, J.: Using text analytics to derive customer service management benefits from unstructured data. MIS Q. Exec. 15, 243–258 (2016)

    Google Scholar 

  11. Hoang, H.H., Jung, J.J.: An ontological framework for context-aware collaborative business process formulation. Comput. Informatics. 33, 553–569 (2014)

    Google Scholar 

  12. Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 300–317. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_17

    Chapter  Google Scholar 

  13. Rizun, N., Revina, A., Meister, V.G.: Assessing business process complexity based on textual data: Evidence from ITIL IT ticket processing. Bus. Process Manag. J. 27(7), 1966–1998 (2021). https://doi.org/10.1108/BPMJ-04-2021-0217

    Article  Google Scholar 

  14. Paas, F., Sweller, J., Paas, F., Sweller, J.: An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educ. Psychol. Rev. 24, 27–45 (2011)

    Article  Google Scholar 

  15. vom Brocke, J., Zelt, S., Schmiedel, T.: On the role of context in business process management. Int. J. Inf. Manage. 36, 486–495 (2016)

    Article  Google Scholar 

  16. Zelt, S., Recker, J., Schmiedel, T., vom Brocke, J.: A theory of contingent business process management. Bus. Process. Manag. J. 25, 1291–1316 (2019)

    Article  Google Scholar 

  17. Weber, M., Grisold, T., vom Brocke, J., Kamm, M.: Context-aware business process modeling: empirical insights from a project with a globally operating company. In: European Conference on Information Systems. AIS, Marrakesh, Morocco (2021)

    Google Scholar 

  18. Rosemann, M., Recker, J.: Context-aware process design: exploring the extrinsic drivers for process flexibility. In: Workshop on Business Process Modeling, Development, and Support at CAiSE, pp. 149–158. CEUR, Luxembourg (2006)

    Google Scholar 

  19. Zelt, S., Recker, J., Schmiedel, T., vom Brocke, J.: Development and validation of an instrument to measure and manage organizational process variety. PLoS ONE 13, e0206198 (2018)

    Article  Google Scholar 

  20. vom Brocke, J., Baier, M.-S., Schmiedel, T., Stelzl, K., Röglinger, M., Wehking, C.: Context-aware business process management. Bus. Inf. Syst. Eng. 63(5), 533–550 (2021). https://doi.org/10.1007/s12599-021-00685-0

    Article  Google Scholar 

  21. Boukadi, K., Chaabane, A., Vincent, L.: Context-aware business processes modelling: concepts, issues and framework. IFAC Proc. Volumes 42(4), 1376–1381 (2009). https://doi.org/10.3182/20090603-3-RU-2001.0291

    Article  Google Scholar 

  22. Enrique, H.V., De Maio, C., Fenza, G., Loia, V., Orciuoli, F.: A context-aware fuzzy linguistic consensus model supporting innovation processes. In: IEEE International Conference on Fuzzy Systems. pp. 1685–1692. IEEE (2016)

    Google Scholar 

  23. Mounira, Z., Mahmoud, B.: Context-aware process mining framework for business process flexibility. In: International Conference on Information Integration and Web-Based Applications and Services, pp. 421–426 (2010)

    Google Scholar 

  24. Hidri, W., M’tir, R.H., Bellamine, N., Saoud, B., Ghedira-Guegan, C.: A meta-model for context-aware adaptive business process as a service in collaborative cloud environment. Procedia Comput. Sci. 164, 177–186 (2019). https://doi.org/10.1016/j.procs.2019.12.170

    Article  Google Scholar 

  25. Graesser, A.C., McNamara, D.S., Kulikowich, J.M.: Coh-metrix: providing multilevel analyses of text characteristics. Educ. Res. 40, 223–234 (2011)

    Article  Google Scholar 

  26. Dinh, L.T.N., Karmakar, G., Kamruzzaman, J.: A survey on context awareness in big data analytics for business applications. Knowl. Inf. Syst. 62(9), 3387–3415 (2020). https://doi.org/10.1007/s10115-020-01462-3

    Article  Google Scholar 

  27. Purnomo, F., Heryadi, Y., Gaol, F.L., Ricky, M.Y.: Smart city’s context awareness using social media. In: International Conference on ICT for Smart Society, pp. 119–123. IEEE (2016)

    Google Scholar 

  28. Cartelli, V., Di Modica, G., Tomarchio, O.: A cost-centric model for context-aware simulations of business processes. In: International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, pp. 303–314. SciTePress (2015)

    Google Scholar 

  29. Daelemans, W.: Explanation in computational stylometry. In: Gelbukh, A. (ed.) CICLing 2013. LNCS, vol. 7817, pp. 451–462. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37256-8_37

    Chapter  Google Scholar 

  30. Anastassiu, M., Santoro, F.M., Recker, J., Rosemann, M.: The quest for organizational flexibility: driving changes in business processes through the identification of relevant context. Bus. Process. Manag. J. 22, 763–790 (2016)

    Article  Google Scholar 

  31. Ploesser, K., Recker, J., Rosemann, M.: Building a methodology for context-aware business processes: insights from an exploratory case study. In: European Conference on Information Systems IT to Empower, pp. 1–12. University of Pretoria, South Africa (2010)

    Google Scholar 

  32. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  33. Wand, Y., Weber, R.: Research commentary: information systems and conceptual modeling – a research agenda. Inf. Syst. Res. 13, 363–376 (2002)

    Article  Google Scholar 

  34. Axelos: ITIL® Service Transition. TSO, London (2011)

    Google Scholar 

  35. Rizun, N., Revina, A., Meister, V.: Method of decision-making logic discovery in the business process textual data. In: Abramowicz, W., Corchuelo, R. (eds.) BIS 2019. LNBIP, vol. 353, pp. 70–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20485-3_6

    Chapter  Google Scholar 

  36. Rizun, N., Revina, A.: Business sentiment analysis. concept and method for perceived anticipated effort identification. In: Information Systems Development: Information Systems Beyond 2020, pp. 1–12. AIS eLibrary (2019)

    Google Scholar 

  37. Grossnickle, J., Raskin, O.: The Handbook of Online Marketing Research: Knowing Your Customer Using the Net. McGraw-Hill Education (2000)

    Google Scholar 

  38. Beigi, G., Hu, X., Maciejewski, R., Liu, H.: An overview of sentiment analysis in social media and its applications in disaster relief. In: Pedrycz, W., Chen, S.-M. (eds.) Sentiment Analysis and Ontology Engineering. SCI, vol. 639, pp. 313–340. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30319-2_13

    Chapter  Google Scholar 

  39. Medelyan, O., Witten, I.H., Divoli, A., Broekstra, J.: Automatic construction of lexicons, taxonomies, ontologies, and other knowledge structures. Wiley Interdisc. Rev.: Data Min. Know. Discovery 3, 257–279 (2013)

    Google Scholar 

  40. Hammer, H., Yazidi, A., Bai, A., Engelstad, P.: Building domain specific sentiment lexicons combining information from many sentiment lexicons and a domain specific corpus. In: Amine, A., Bellatreche, L., Elberrichi, Z., Neuhold, E.J., Wrembel, R. (eds.) CIIA 2015. IAICT, vol. 456, pp. 205–216. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19578-0_17

    Chapter  Google Scholar 

  41. Hutto, C., Gilbert, E.: VADER: a parsimonious rule-based model for sentiment analysis of social media text. Proc. Int. AAAI Conf. Web Soc. Media 8(1), 216–225 (2014). https://doi.org/10.1609/icwsm.v8i1.14550

    Article  Google Scholar 

  42. Blei, D.: Probabilistic topic models. Commun. ACM 55, 77–84 (2012)

    Article  Google Scholar 

  43. Eppler, M.J., Seifried, P., Röpnack, A.: Improving knowledge intensive processes through an enterprise knowledge medium. In: Conference on Managing Organizational Knowledge for Strategic Advantage: The Key Role of Information Technology and Personnel. pp. 222–230. Gabler (1999)

    Google Scholar 

  44. Rizun, N., Revina, A., Meister, V.G.: Analyzing content of tasks in Business Process Management. Blending task execution and organization perspectives. Comput. Ind. 130, 103463 (2021)

    Article  Google Scholar 

  45. Wright, A.P., Wright, A.T., McCoy, A.B., Sittig, D.F.: The use of sequential pattern mining to predict next prescribed medications. J. Biomed. Inform. 53, 73–80 (2015)

    Article  Google Scholar 

  46. Henricksen, K., Indulska, J., Rakotonirainy, A.: Modeling context information in pervasive computing systems. In: Mattern, F., Naghshineh, M. (eds.) pervasive computing, pp. 167–180. Springer Berlin Heidelberg, Berlin, Heidelberg (2002). https://doi.org/10.1007/3-540-45866-2_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Revina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Revina, A., Rizun, N., Aksu, Ü. (2023). Towards a Framework for Context Awareness Based on Textual Process Data: Case Study Insights. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022 Workshops . EDOC 2022. Lecture Notes in Business Information Processing, vol 466. Springer, Cham. https://doi.org/10.1007/978-3-031-26886-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26886-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26885-4

  • Online ISBN: 978-3-031-26886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics