Abstract
Modelling and developing digital twin solutions is a growing and promising trend followed by enterprises with the ambition to improve decision-making and accelerate risk assessment and production time. However, as a current emerging trend, there is no recognised standard nor a unique solution that provides support for all the characteristics of a digital twin. This article builds upon the result of a literature review that we conducted to extract the main characteristics attributed to Digital Twins. The identified characteristics guided the proposal of a Digital Twin Modelling Notation (DTMN). In this work we present the DTMN meta-model supported by a graphical modelling notation. This modelling notation can be used as a starting point to design and reason about Digital Twin solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
The proposed library and additional information about DTMN are available on: https://pros.unicam.it/dtmn/.
References
Alam, K.M., El-Saddik, A.: C2PS: a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE Access 5, 2050–2062 (2017)
Analytics, I.: IoT platforms: the central backbone of the Internet of Things. In: White Paper (2015)
Anto Budiardjo, D.M.: Digital twin system interoperability framework. Digital Twin Consortium (2021)
Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Softw. 20(5), 36–41 (2003)
Atkinson, C., Kühne, T.: Taming the complexity of digital twins. IEEE Softw. 39(2), 27–32 (2022)
Ayoobkhan, M.U.A., et al.: Smart connected digital products and IoT platform with the digital twin, pp. 330–350. IGI Global (2021)
Bhattacharyya, A., Izgi, E.: Digital twin technologies for high performance manufacturing. IBM White paper (2018)
Boje, C., Guerriero, A., Kubicki, S., Rezgui, Y.: Towards a semantic construction digital twin: directions for future research. Autom. Constr. 114, 103179 (2020)
Bordeleau, F., et al.: Towards model-driven digital twin engineering: current opportunities and future challenges. In: International Conference on Systems Modelling and Management, pp. 43–54 (2020)
Botkina, D., Hedlind, M., Olsson, B., Henser, J., Lundholm, T.: Digital twin of a cutting tool. Procedia Cirp 72, 215–218 (2018)
Christian, J., et al.: Model-driven digital twin construction: synthesizing the integration of cyber-physical systems with their information systems. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, pp. 90–101 (2020)
Clark, T., Kulkarni, V., Whittle, J., Breu, R.: Engineering digital twin-enabled systems. IEEE Softw. 39(2), 16–19 (2022)
Clark, T., Sammut, P., Willans, J.: Applied metamodelling: a foundation for language driven development. arXiv:1505.00149 (2015)
Compagnucci, I., Corradini, F., Fornari, F., Polini, A., Re, B., Tiezzi, F.: Modelling notations for IoT-aware business processes: a systematic literature review. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 108–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_9
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: FloWare: an approach for IoT support and application development. In: Augusto, A., Gill, A., Nurcan, S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds.) BPMDS/EMMSAD -2021. LNBIP, vol. 421, pp. 350–365. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79186-5_23
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: Floware: a model-driven approach fostering reuse and customisation in IoT applications modelling and development. Softw. Syst. Model. 1–28 (2022). https://doi.org/10.1007/s10270-022-01026-9
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: Towards a digital twin modelling notation. In: DASC/PiCOM/CBDCom/CyberSciTech22. IEEE (2022)
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B.: X-IoT: a model-driven approach for cross-platform IoT applications development. In: SAC 2022 pp. 1448–1451 (2022)
Dalibor, M., et al.: Towards a model-driven architecture for interactive digital twin cockpits. Concept. Model. 12400, 377–387 (2020)
Demkovich, N., Yablochnikov, E., Abaev, G.: Multiscale modeling and simulation for industrial cyber-physical systems. In: IEEE Industrial Cyber-Physical Systems, pp. 291–296 (2018)
Dobrescu, R., Merezeanu, D., Mocanu, S.: Context-aware control and monitoring system with IoT and cloud support. Comput. Electron. Agric. 160, 91–99 (2019)
Fahmideh, M., Zowghi, D.: An exploration of IoT platform development. Inf. Syst. 87, 1–25 (2020). Article number 101409
Fill, H.: Enterprise modeling: from digital transformation to digital ubiquity. In: Federated Conference on Computer Science and Information Systems, vol. 21, pp. 1–4 (2020)
Harper, K.E., Ganz, C., Malakuti, S.: Digital twin architecture and standards. IIC J. Innov. 12, 72–83 (2019)
He, Y., Guo, J., Zheng, X.: From surveillance to digital twin: challenges and recent advances of signal processing for industrial internet of things. IEEE Signal Process. 35(5), 120–129 (2018)
Hoffmann, J., Heimes, P., Senel, S.: IoT platforms for the internet of production. IEEE Internet Things J. 6(3), 4098–4105 (2019)
Hribernik, K., Cabri, G., Mandreoli, F., Mentzas, G.: Autonomous, context-aware, adaptive digital twins-state of the art and roadmap. Comput. Ind. 133, 103508 (2021)
Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. J. Manuf. Sci. Technol. 29, 36–52 (2020)
Kulkarni, V., Clark, T.: Towards adaptive enterprises using digital twins. In: International Conference on Research Challenges in Information Science, pp. 1–5 (2019)
Lim, K.Y.H., Zheng, P., Chen, C.: A state-of-the-art survey of digital twin: techniques, engineering product lifecycle management and business innovation perspectives. J. Intell. Manuf. 31(6), 1313–1337 (2020)
Lu, Y., Liu, C., Wang, K.I., Huang, H., Xu, X.: Digital Twin-driven smart manufacturing: connotation, reference model, applications and research issues. Robot. Comput. Integr. Manuf. 61, 101837 (2020)
Madni, A.M., Madni, C.C., Lucero, S.D.: Leveraging digital twin technology in model-based systems engineering. Syst. 7, 7 (2019)
Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. IEEE Proc. 108(10), 1785–1824 (2020)
Negri, E., Fumagalli, L., Macchi, M.: A review of the roles of digital twin in cps-based production systems. Procedia Manuf. 11, 939–948 (2017)
Qi, Q., et al.: Enabling technologies and tools for digital twin. Manuf. Syst. J. 58, 3–21 (2021)
Sandkuhl, K., Stirna, J.: Supporting early phases of digital twin development with enterprise modeling and capability management: requirements from two industrial cases. Enterp. Bus. Process Inf. Syst. Model. 387, 284–299 (2020)
Schroeder, G., et al.: Visualising the digital twin using web services and augmented reality. In: Conference on Industrial Informatics, pp. 522–527 (2016)
Schroeder, G.N., Steinmetz, C., Rodrigues, R.N., Henriques, R.V.B., Rettberg, A., Pereira, C.E.: A methodology for digital twin modeling and deployment for industry 4.0. Proc. IEEE 109(4), 556–567 (2021)
Semeraro, C., Lezoche, M., Panetto, H., Dassisti, M.: Digital twin paradigm: a systematic literature review. Comput. Ind. 130, 103469 (2021)
Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., Devine, D.: Digital twin: origin to future. Appl. Syst. Innov. 4(2), 1–19 (2021). Article number 36
Stark, R., Damerau, T.: Digital twin. In: Chatti, S., Tolio, T. (eds.) CIRP Encyclopedia of Production Engineering. Springer, Berlin, Heidelberg (2019). https://doi.org/10.1007/978-3-642-35950-7_16870-1
Steinmetz, C., Rettberg, A., Ribeiro, F.G.C., Schroeder, G., Pereira, C.E.: Internet of Things ontology for digital twin in cyber physical systems. In: Symposium on Computing Systems Engineering, pp. 154–159 (2018)
Talkhestani, B.A., Jazdi, N., Schloegl, W., Weyrich, M.: Consistency check to synchronize the digital twin of manufacturing automation based on anchor points. Procedia CIRP 72, 159–164 (2018)
Tao, F., Qi, Q., Wang, L., Nee, A.: Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0: correlation and comparison. Engineering 5(4), 653–661 (2019)
Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: state-of-the-art. IEEE Trans. Ind. Inf. 15(4), 2405–2415 (2019)
Trauer, J.E.A.: What is a digital twin? - definitions and insights from an industrial case study in technical product development. In: DESIGN Conference, vol. 1, pp. 757–766 (2020)
VanDerHorn, E., Mahadevan, S.: Digital twin: generalization, characterization and implementation. Decis. Support Syst. 145, 113524 (2021)
Velosa, A., Middleton, P.: Emerging Technologies: Revenue Opportunity Projection of Digital Twins, Gartner, Stamford, Conn. (2022). Accessed June 2022
Vrabič, R., Erkoyuncu, J.A., Butala, P., Roy, R.: Digital twins: understanding the added value of integrated models for through-life engineering services. Procedia Manuf. 16, 139–146 (2018). int. Conf. on Through-life Engineering Services
Davis, W.S.: HIPO hierarchy plus input-process-output. the information system consultant’s handbook: systems analysis and design, pp. 503–511 (1988)
Xiao, R., Wu, Z., Wang, D.: A finite-state-machine model driven service composition architecture for Internet of Things rapid prototyping. Futur. Gener. Comput. Syst. 99, 473–488 (2019)
Zhang, C., Xu, W., Liu, J., Liu, Z., Zhou, Z., Pham, D.T.: A reconfigurable modeling approach for digital twin-based manufacturing system. Procedia Cirp 83, 118–125 (2019)
Acknowledgements
This work has been partially supported by the MIUR project PRIN “Fluidware” (A Novel Approach for Large-Scale IoT Systems, n. 2017KRC7KT) and by Marche Region in implementation of the financial programme POR MARCHE FESR 2014-2020, project “Miracle” (Marche Innovation and Research fAcilities for Connected and sustainable Living Environments), CUP B28I19000330007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Corradini, F., Fedeli, A., Fornari, F., Polini, A., Re, B. (2023). DTMN a Modelling Notation for Digital Twins. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022 Workshops . EDOC 2022. Lecture Notes in Business Information Processing, vol 466. Springer, Cham. https://doi.org/10.1007/978-3-031-26886-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-26886-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26885-4
Online ISBN: 978-3-031-26886-1
eBook Packages: Computer ScienceComputer Science (R0)