Skip to main content

Adaptive Management of Cyber-Physical Workflows by Means of Case-Based Reasoning and Automated Planning

  • Conference paper
  • First Online:
Enterprise Design, Operations, and Computing. EDOC 2022 Workshops (EDOC 2022)

Abstract

Today, it is difficult for companies to react to unforeseen events, e. g., global crises. Highly standardized manufacturing processes are particularly limited in their ability to react flexibly, creating a demand for more advanced workflow management techniques, e. g., extended by artificial intelligence methods. In this paper, we describe how Case-Based Reasoning (CBR) can be combined with automated planning to enhance flexibility in cyber-physical production workflows. We present a compositional adaptation method complemented with generative adaptation to resolve unexpected situations during workflow execution. This synergy is advantageous since CBR provides specific knowledge about already experienced situations, whereas planning assists with general knowledge about the domain. In an experimental evaluation, we show that CBR offers a good basis by reusing cases and by adapting them to better suit the current problem. The combination with automated planning further improves these results and, thus, contributes to enhance the flexibility of cyber-physical workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    More information about the smart factory model and a video can be found at https://iot.uni-trier.de.

  2. 2.

    More information about the execution of workflows in the Fischertechnik smart factory model can be found in [14, 16, 26].

  3. 3.

    http://procake.uni-trier.de.

  4. 4.

    The PDDL 2.1 domain and all planning problems are available at https://gitlab.rlp.net/iot-lab-uni-trier/edoc-2022-idams-workshop.

References

  1. Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, methodological variations, and system approaches. AI Commun. 7(1), 39–59 (1994)

    Article  Google Scholar 

  2. Bergmann, R., et al.: ProCAKE: a process-oriented case-based reasoning framework. In: 27th ICCBR Workshops, vol. 2567, pp. 156–161. CEUR-WS.org (2019)

    Google Scholar 

  3. Bergmann, R., Gil, Y.: Similarity assessment and efficient retrieval of semantic workflows. Inf. Syst. 40, 115–127 (2014)

    Article  Google Scholar 

  4. Bergmann, R., Muñoz-Avila, H., Veloso, M., Melis, E.: CBR applied to planning. In: Lenz, M., Burkhard, H.-D., Bartsch-Spörl, B., Wess, S. (eds.) Case-Based Reasoning Technology. LNCS (LNAI), vol. 1400, pp. 169–199. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69351-3_7

    Chapter  Google Scholar 

  5. Borrajo, D., Roubícková, A., Serina, I.: Progress in case-based planning. ACM Comput. Surv. 47(2), 35:1–35:39 (2014)

    Google Scholar 

  6. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust and flexible process support. Comp. Sci. Res. Dev. 23(2), 81–97 (2009)

    Article  Google Scholar 

  7. Gil, Y., et al.: Wings: intelligent workflow-based design of computational experiments. IEEE Intell. Syst. 26(1), 62–72 (2011)

    Article  Google Scholar 

  8. Helmert, M.: The fast downward planning system. J. Artif. Intell. Res. 26, 191–246 (2006)

    Article  Google Scholar 

  9. Hoffmann, M., Malburg, L., Bach, N., Bergmann, R.: GPU-based graph matching for accelerating similarity assessment in process-oriented case-based reasoning. In: Keane, M.T., Wiratunga, N. (eds.) Case-Based Reasoning Research and Development. ICCBR 2022. LNCS, vol. 13405, pp. 240–255. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14923-8_16

  10. Janiesch, C., et al.: The internet-of-things meets business process management. A manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)

    Google Scholar 

  11. Kendall-Morwick, J., Leake, D.: A study of two-phase retrieval for process-oriented case-based reasoning. In: Montani, S., Jain, L. (eds.) Successful Case-based Reasoning Applications-2. Studies in Computational Intelligence, vol. 494, pp. 7–27. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-38736-4_2

  12. Lasi, H., et al.: Industry 4.0. BISE 6(4), 239–242 (2014)

    Google Scholar 

  13. Lee, J., Kao, H.A., Yang, S.: Service innovation and smart analytics for industry 4.0 and big data environment. Procedia CIRP 16, 3–8 (2014)

    Google Scholar 

  14. Malburg, L., et al.: Semantic web services for AI-research with physical factory simulation models in industry 4.0. In: 1st IN4PL, pp. 32–43. ScitePress (2020)

    Google Scholar 

  15. Malburg, L., Bergmann, R.: Towards adaptive workflow management by case-based reasoning and automated planning. In: 30th ICCBR Workshops. CEUR-WS.org (2022). Accepted for Publication

    Google Scholar 

  16. Malburg, L., Seiger, R., Bergmann, R., Weber, B.: Using physical factory simulation models for business process management research. In: Del Río Ortega, A., Leopold, H., Santoro, F.M. (eds.) BPM 2020. LNBIP, vol. 397, pp. 95–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-66498-5_8

    Chapter  Google Scholar 

  17. Marrella, A., Mecella, M., Sardiña, S.: Intelligent process adaptation in the SmartPM system. ACM Trans. Intell. Syst. Technol. 8(2), 25:1–25:43 (2017)

    Google Scholar 

  18. Marrella, A., Mecella, M., Sardiña, S.: Supporting adaptiveness of cyber-physical processes through action-based formalisms. AI Commun. 31(1), 47–74 (2018)

    Article  Google Scholar 

  19. Minor, M., et al.: Case-based adaptation of workflows. Inf. Syst. 40, 142–152 (2014)

    Article  Google Scholar 

  20. Monostori, L.: Cyber-physical production systems: roots, expectations and R &D challenges. Procedia CIRP 17, 9–13 (2014)

    Article  Google Scholar 

  21. Müller, G., Bergmann, R.: Workflow streams: a means for compositional adaptation in process-oriented CBR. In: Lamontagne, L., Plaza, E. (eds.) ICCBR 2014. LNCS (LNAI), vol. 8765, pp. 315–329. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11209-1_23

    Chapter  Google Scholar 

  22. Nguyen, T.A., Sreedharan, S., Kambhampati, S.: Robust planning with incomplete domain models. Artif. Intell. 245, 134–161 (2017)

    Article  Google Scholar 

  23. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Systems - Challenges, Methods, Technologies. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30409-5

    Book  Google Scholar 

  24. Rodríguez-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and scheduling in workflow domains. Expert Syst. Appl. 33(2), 389–406 (2007)

    Article  Google Scholar 

  25. Seiger, R., et al.: Toward a framework for self-adaptive workflows in cyber-physical systems. Softw. Syst. Model. 18(2), 1117–1134 (2019)

    Article  Google Scholar 

  26. Seiger, R., et al.: Integrating process management and event processing in smart factories: a systems architecture and use cases. J. Manuf. Syst. 63, 575–592 (2022)

    Article  Google Scholar 

  27. Veloso, M.M. (ed.): Planning and Learning by Analogical Reasoning. LNCS, vol. 886. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58811-6

    Book  Google Scholar 

  28. Weber, B., Wild, W., Breu, R.: CBRFlow: enabling adaptive workflow management through conversational case-based reasoning. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28631-8_32

    Chapter  Google Scholar 

  29. Zeyen, C., Malburg, L., Bergmann, R.: Adaptation of scientific workflows by means of process-oriented case-based reasoning. In: Bach, K., Marling, C. (eds.) ICCBR 2019. LNCS (LNAI), vol. 11680, pp. 388–403. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29249-2_26

    Chapter  Google Scholar 

  30. Zhuo, H.H., Nguyen, T.A., Kambhampati, S.: Model-lite case-based planning. In: 27th AAAI. AAAI Press (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lukas Malburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Malburg, L., Brand, F., Bergmann, R. (2023). Adaptive Management of Cyber-Physical Workflows by Means of Case-Based Reasoning and Automated Planning. In: Sales, T.P., Proper, H.A., Guizzardi, G., Montali, M., Maggi, F.M., Fonseca, C.M. (eds) Enterprise Design, Operations, and Computing. EDOC 2022 Workshops . EDOC 2022. Lecture Notes in Business Information Processing, vol 466. Springer, Cham. https://doi.org/10.1007/978-3-031-26886-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-26886-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-26885-4

  • Online ISBN: 978-3-031-26886-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics