Skip to main content

Comparison of Different Robust Control Methods for Trajectory Tracking of Cable-Driven Parallel Robots in Fluidic Environment

  • Conference paper
  • First Online:
Robot Intelligence Technology and Applications 7 (RiTA 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 642))

  • 783 Accesses

Abstract

A Cable-Driven Parallel Robot (CDPR) is a specialized parallel robot that uses flexible cables to connect a base platform (BP) to a mobile platform (MP). In these robots, cables can be winded or unwinded using electrical motors, winches, and pullies to move the MP. Various applications of these robots have been proposed, mainly due to the low inertia, high load capacity, and large workspaces. The application and control of these types of robots for underwater navigation and intervention are rarely presented in the literature. This paper examines the efficiency of different robust controllers for trajectory tracking of CDPRs, considering fluid and robot parameters uncertainties. A set of dynamic equations is first presented, considering fluid forces, including buoyancy, drag, and added mass. Four controllers, consisting of Inverse Dynamics (ID), Robust Passivity Based (RPB), Robust Inverse Dynamics (RID), and Adaptive Robust (AR), are then implemented in the CDPR. The effect of accounting for uncertainties in robot and fluid parameters in different controller efficiency is investigated using simulations in MATLAB software. The results illustrate the effectiveness of the model-free AR controller in handling uncertainties in robot and fluid parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tanaka, M., Seguchi, Y., Shimada, S.: Kineto-statics of skycam-type wire transport system. In: Proceedings of USA-Japan Symposium on Flexible Automation, Crossing Bridges: Advances in Flexible Automation and Robotics, pp. 689–694 (1988)

    Google Scholar 

  2. Albus, J., Bostelman, R., Dagalakis, N.: The NIST robocrane. J. Robot. Syst. 10(5), 709–724 (1993)

    Article  Google Scholar 

  3. Nan, R., Li, D.: The five-hundred-meter aperture spherical radio telescope (FAST) project. In: IOP Conference Series: Materials Science and Engineering, vol. 44, p. 12022 (2013)

    Google Scholar 

  4. Ferraresi, C., Pescarmona, F.: Cable Driven Devices for Telemanipulation. IntechOpen, Croatia (2010). https://www.openaire.eu/search/publication?articleId=intech______::c5e977d68d69ad1bdeca41bbff6e13f9

  5. Ferraresi, C., Paoloni, M., Pescarmona, F.: A new methodology for the determination of the workspace of six-DOF redundant parallel structures actuated by nine wires. Robotica 25(1), 113–120 (2007)

    Article  Google Scholar 

  6. Ferraresi, C., Paoloni, M., Pastorelli, S., Pescarmona, F.: A new 6-DOF parallel robotic structure actuated by wires: the WiRo-6.3. J. Robot. Syst. 21(11), 581–595 (2004)

    Article  MATH  Google Scholar 

  7. Barroso, R., Saltaren, R., Portilla, G., Cely, J.S., Carpio, M.: Smooth path planner for dynamic simulators based on cable-driven parallel robots. In: 2018 International Conference on Smart Systems and Technologies (SST), pp. 145–150, October 2018

    Google Scholar 

  8. Asl, H.J., Yoon, J.: Stable assist-as-needed controller design for a planar cable-driven robotic system. Int. J. Control Autom. Syst. 15(6), 2871–2882 (2017). https://doi.org/10.1007/s12555-016-0492-x

    Article  Google Scholar 

  9. Abbasnejad, G., Yoon, J., Lee, H.: Optimum kinematic design of a planar cable-driven parallel robot with wrench-closure gait trajectory. Mech. Mach. Theory 99, 1–18 (2016)

    Article  Google Scholar 

  10. Zhang, L., Li, L., Zou, Y., Wang, K., Jiang, X., Ju, H.: Force control strategy and bench press experimental research of a cable driven astronaut rehabilitative training robot (2017)

    Google Scholar 

  11. Zou, Y., Wang, N., Wang, X., Ma, H., Liu, K.: Design and experimental research of movable cable-driven lower limb rehabilitation robot. IEEE Access 7, 2315–2326 (2019)

    Article  Google Scholar 

  12. Zhao, T., Qian, S., Chen, Q., Sun, Z.: Design and analysis of a cable-driven parallel robot for waist rehabilitation. In: 2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA), pp. 173–178, May 2018

    Google Scholar 

  13. Zanotto, D., Rosati, G., Minto, S., Rossi, A.: Sophia-3: a semiadaptive cable-driven rehabilitation device with a tilting working plane. IEEE Trans. Robot. 30(4), 974–979 (2014)

    Article  Google Scholar 

  14. Dovat, L., et al.: HandCARE: a cable-actuated rehabilitation system to train hand function after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 16(6), 582–591 (2008)

    Article  Google Scholar 

  15. Izard, J.-B., et al.: Large-scale 3D printing with cable-driven parallel robots. Constr. Robot. 1(1–4), 69–76 (2017). https://doi.org/10.1007/s41693-017-0008-0

    Article  Google Scholar 

  16. Barnett, E., Gosselin, C.: Large-scale 3D printing with a cable-suspended robot. Addit. Manuf. 7, 27–44 (2015)

    Google Scholar 

  17. Zarebidoki, M., Dhupia, J., Xu, W.: Dynamics modelling and robust passivity-based control of cable-suspended parallel robots in fluidic environment, Budapest, Hungary (2021)

    Google Scholar 

  18. Marino, H., Bergeles, C., Nelson, B.J.: Robust electromagnetic control of microrobots under force and localization uncertainties. IEEE Trans. Autom. Sci. Eng. 11(1), 310–316 (2014)

    Article  Google Scholar 

  19. Wang, Z., Chi, Q., Bai, T., Wang, Q., Liu, L.: A dynamic model of drag force for catalytic micromotors based on navier-stokes equations. Micromachines 9(9), 459 (2018)

    Article  Google Scholar 

  20. Jun, B.-H., Lee, J., Lee, P.-M.: Repetitive periodic motion planning and directional drag optimization of underwater articulated robotic arms. Int. J. Control Autom. Syst. 4(1), 42–52 (2006)

    Google Scholar 

  21. McLain, T.W., Rock, S.M.: Experiments in the hydrodynamic modeling of an underwater manipulator. In: Proceedings of Symposium on Autonomous Underwater Vehicle Technology, pp. 463–469 (1996)

    Google Scholar 

  22. Franklin, S.: Marine Control Systems, 1st edn. The MIT Press, Cambridge (2002). http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=028381249&sequence=000001&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA

  23. Safavi, S.M., Hoshyarmanesh, H.R., Mirian, S.S., Khandan, R.: Design of an adaptive-robust controller for a powder coating robot and its comparison with inverse dynamic approach. Int. J. Adv. Manuf. Technol. 45(11–12), 1179–1186 (2009). https://doi.org/10.1007/s00170-009-2043-6

    Article  Google Scholar 

  24. de Wit, C.C., Siciliano, B., Bastin, G.: Theory of Robot Control. Springer, London (1996). https://doi.org/10.1007/978-1-4471-1501-4

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Zarebidoki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zarebidoki, M., Dhupia, J.S., Xu, P. (2023). Comparison of Different Robust Control Methods for Trajectory Tracking of Cable-Driven Parallel Robots in Fluidic Environment. In: Jo, J., et al. Robot Intelligence Technology and Applications 7. RiTA 2022. Lecture Notes in Networks and Systems, vol 642. Springer, Cham. https://doi.org/10.1007/978-3-031-26889-2_30

Download citation

Publish with us

Policies and ethics