Skip to main content

Transparency and Traceability for AI-Based Defect Detection in PCB Production

  • Conference paper
  • First Online:
Modelling and Development of Intelligent Systems (MDIS 2022)

Abstract

Automatic Optical Inspection (AOI) is used to detect defects in PCB production and provide the end-user with a trustworthy PCB. AOI systems are enhanced by replacing the traditional heuristic algorithms with more advanced methods such as neural networks. However, they provide the operators with little or no information regarding the reasoning behind each decision.

This paper explores the research gaps in prior PCB defect detection methods and replaces these complex methods with CNN networks. Next, it investigates five different Cam-based explainer methods on eight selected CNN architectures to evaluate the performance of each explainer. In this paper, instead of synthetic datasets, two industrial datasets are utilized to have a realistic research scenario. The results evaluated by the proposed performance metric demonstrate that independent of the dataset, the CNN architectures are interpretable using the same explainer methods. Additionally, the Faster Score-Cam method performs better than other methods used in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. National physical laboratory industry defects database (2022). http://defectsdatabase.npl.co.uk/

  2. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  3. Adibhatla, V.A., Chih, H.C., Hsu, C.C., Cheng, J., Abbod, M.F., Shieh, J.S.: Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics 9(9), 1547 (2020)

    Article  Google Scholar 

  4. Angelopoulos, A., et al.: Tackling faults in the industry 40 era-a survey of machine-learning solutions and key aspects. Sensors 20(1), 109 (2019)

    Google Scholar 

  5. Batista, G.E., Bazzan, A.L., Monard, M.C., et al.: Balancing training data for automated annotation of keywords: a case study. In: WOB, pp. 10–18 (2003)

    Google Scholar 

  6. Buhrmester, V., Münch, D., Arens, M.: Analysis of explainers of black box deep neural networks for computer vision: a survey. Mach. Learn. Knowl. Extract. 3(4), 966–989 (2021)

    Article  Google Scholar 

  7. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE winter conference on applications of computer vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  8. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  MATH  Google Scholar 

  9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  10. Ding, R., Dai, L., Li, G., Liu, H.: TDD-net: a tiny defect detection network for printed circuit boards. CAAI Trans. Intell. Technol. 4(2), 110–116 (2019)

    Article  Google Scholar 

  11. Feng, Z., Ji, H., Stanković, L., Fan, J., Zhu, M.: SC-SM CAM: An efficient visual interpretation of CNN for SAR images target recognition. Remote Sens. 13(20), 4139 (2021)

    Article  Google Scholar 

  12. Feng, Z., Zhu, M., Stanković, L., Ji, H.: Self-matching CAM: a novel accurate visual explanation of CNNs for SAR image interpretation. Remote Sens. 13(9), 1772 (2021)

    Article  Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  15. Huang, W., Wei, P.: A PCB dataset for defects detection and classification. arXiv preprint arXiv:1901.08204 (2019)

  16. Kolesnikov, A., et al.: Big transfer (BiT): general visual representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 491–507. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_29

    Chapter  Google Scholar 

  17. Lan, Z., Hong, Y., Li, Y.: An improved YOLOv3 method for PCB surface defect detection. In: 2021 IEEE International Conference on Power Electronics, Computer Applications (ICPECA), pp. 1009–1015. IEEE (2021)

    Google Scholar 

  18. Li, Y.T., Kuo, P., Guo, J.I.: Automatic industry PCB board dip process defect detection with deep ensemble method. In: 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE), pp. 453–459. IEEE (2020)

    Google Scholar 

  19. Liao, X., Lv, S., Li, D., Luo, Y., Zhu, Z., Jiang, C.: YOLOv4-MN3 for PCB surface defect detection. Appl. Sci. 11(24), 11701 (2021)

    Article  Google Scholar 

  20. Liu, G., Wen, H.: Printed circuit board defect detection based on MobileNet-YOLO-fast. J. Electron. Imaging 30(4), 043004 (2021)

    Google Scholar 

  21. Nau, J., Richter, J., Streitferdt, D., Kirchhoff, M.: Simulating the printed circuit board assembly process for image generation. In: 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC), pp. 245–254. IEEE (2020)

    Google Scholar 

  22. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should i trust you?” Explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  23. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetv 2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4510–4520 (2018)

    Google Scholar 

  24. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vision 128(2), 336–359 (2020)

    Article  Google Scholar 

  25. Shi, W., Lu, Z., Wu, W., Liu, H.: Single-shot detector with enriched semantics for PCB tiny defect detection. J. Eng. 2020(13), 366–372 (2020)

    Article  Google Scholar 

  26. Si, N., Zhang, W., Qu, D., Chang, H., Zhao, D.: Fine-grained visual explanations for the convolutional neural network via class discriminative deconvolution. Multimed. Tools Appl. 81(2), 2733–2756 (2022)

    Article  Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  28. Smuha, N.A.: The EU approach to ethics guidelines for trustworthy artificial intelligence. Comput. Law Rev. Int. 20(4), 97–106 (2019)

    Article  Google Scholar 

  29. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. arXiv preprint arXiv:1412.6806 (2014)

  30. Tomek, I.: Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 6, 769–772 (1976)

    MathSciNet  MATH  Google Scholar 

  31. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 111–119. IEEE (2020)

    Google Scholar 

  32. Wu, X., Ge, Y., Zhang, Q., Zhang, D.: PCB defect detection using deep learning methods. In: 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD), pp. 873–876. IEEE (2021)

    Google Scholar 

  33. Zhang, Q., Rao, L., Yang, Y.: Group-CAM: group score-weighted visual explanations for deep convolutional networks. arXiv preprint arXiv:2103.13859 (2021)

  34. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2921–2929. IEEE (2016)

    Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by Thüringer Aufbaubank (TAB, 2021 FE 9036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rezaei, A., Richter, J., Nau, J., Streitferdt, D., Kirchhoff, M. (2023). Transparency and Traceability for AI-Based Defect Detection in PCB Production. In: Simian, D., Stoica, L.F. (eds) Modelling and Development of Intelligent Systems. MDIS 2022. Communications in Computer and Information Science, vol 1761. Springer, Cham. https://doi.org/10.1007/978-3-031-27034-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27034-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27033-8

  • Online ISBN: 978-3-031-27034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics