Skip to main content

Intrusion Detection by XGBoost Model Tuned by Improved Social Network Search Algorithm

  • Conference paper
  • First Online:
Modelling and Development of Intelligent Systems (MDIS 2022)

Abstract

The industry 4.0 flourished recently due to the advances in a number of contemporary fields, alike artificial intelligence and internet of things. It significantly improved the industrial process and factory production, by relying on the communication between devices, production machines and equipment. The biggest concern in this process is security, as each of the network-connected components is vulnerable to the malicious attacks. Intrusion detection is therefore a key aspect and the largest challenge in the industry 4.0 domain. To address this issue, a novel framework, based on the XGBoost machine learning model, tuned with a modified variant of social network search algorithm, is proposed. The introduced framework and algorithm have been evaluated on a challenging UNSW-NB 15 benchmark intrusion detection dataset, and the experimental findings were put into comparison against the outcomes of other high performing metaheuristics for the same problem. For comparison purposes, alongside the original version of social network search, harris hawk optimization algorithm, firefly algorithm, bat algorithm, and artificial bee colony, were also adopted for XGBoost tuning and validated against the same internet of things security benchmark dataset. Experimental findings proved that the best performing developed XGBoost model is the one which is tuned by introduced modified social network search algorithm, outscoring others in most of performance indicators which were employed for evaluation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd Elaziz, M., et al.: An improved marine predators algorithm with fuzzy entropy for multi-level thresholding: real world example of Covid-19 CT image segmentation. IEEE Access 8, 125306–125330 (2020)

    Article  Google Scholar 

  2. Abdulrahman, S.M.: Using swarm intelligence for solving NP-hard problems. Acad. J. Nawroz Univ. 6, 46–50 (2017)

    Article  Google Scholar 

  3. Bacanin, N., et al.: Artificial neural networks hidden unit and weight connection optimization by quasi-refection-based learning artificial bee colony algorithm. IEEE (2021)

    Google Scholar 

  4. Bacanin, N., Bezdan, T., Zivkovic, M., Chhabra, A.: Weight optimization in artificial neural network training by improved monarch butterfly algorithm. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. LNDECT, vol. 68, pp. 397–409. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-1866-6_29

    Chapter  Google Scholar 

  5. Bacanin, N., Petrovic, A., Zivkovic, M., Bezdan, T., Antonijevic, M.: Feature selection in machine learning by hybrid sine cosine metaheuristics. In: Singh, M., Tyagi, V., Gupta, P.K., Flusser, J., Ören, T., Sonawane, V.R. (eds.) ICACDS 2021. CCIS, vol. 1440, pp. 604–616. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81462-5_53

    Chapter  Google Scholar 

  6. Bacanin, N., Stoean, C., Zivkovic, M., Jovanovic, D., Antonijevic, M., Mladenovic, D.: Multi-swarm algorithm for extreme learning machine optimization. Sensors 22, 4204 (2022)

    Article  Google Scholar 

  7. Bacanin, N., Tuba, E., Zivkovic, M., Strumberger, I., Tuba, M.: Whale optimization algorithm with exploratory move for wireless sensor networks localization. In: Abraham, A., Shandilya, S.K., Garcia-Hernandez, L., Varela, M.L. (eds.) HIS 2019. AISC, vol. 1179, pp. 328–338. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-49336-3_33

    Chapter  Google Scholar 

  8. Bacanin, N., Zivkovic, M., Bezdan, T., Cvetnic, D., Gajic, L.: Dimensionality reduction using hybrid brainstorm optimization algorithm. In: Saraswat, M., Roy, S., Chowdhury, C., Gandomi, A.H. (eds.) Proceedings of International Conference on Data Science and Applications. LNNS, vol. 287, pp. 679–692. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-5348-3_54

    Chapter  Google Scholar 

  9. Bacanin, N., Zivkovic, M., Bezdan, T., Venkatachalam, K., Abouhawwash, M.: Modified firefly algorithm for workflow scheduling in cloud-edge environment. Neural Comput. Appl. 34, 9043–9068 (2022)

    Article  Google Scholar 

  10. Basha, J., et al.: Chaotic Harris Hawks optimization with quasi-reflection-based learning: an application to enhance CNN design. Sensors 21, 6654 (2021)

    Article  Google Scholar 

  11. Beni, G.: Swarm intelligence. In: Sotomayor, M., Pérez-Castrillo, D., Castiglione, F. (eds.) Complex Social and Behavioral Systems. ECSSS, pp. 791–818. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0368-0_530

    Chapter  Google Scholar 

  12. Bezdan, T., Milosevic, S., Venkatachalam, K., Zivkovic, M., Bacanin, N., Strumberger, I.: Optimizing convolutional neural network by hybridized elephant herding optimization algorithm for magnetic resonance image classification of glioma brain tumor grade. In: 2021 Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 171–176 (2021)

    Google Scholar 

  13. Bezdan, T., et al.: Hybrid fruit-fly optimization algorithm with k-means for text document clustering. Mathematics 9, 1929 (2021)

    Article  Google Scholar 

  14. Bezdan, T., Zivkovic, M., Bacanin, N., Chhabra, A., Suresh, M.: Feature selection by hybrid brain storm optimization algorithm for COVID-19 classification. Mary Ann Liebert Inc., publishers 140 Huguenot Street, 3rd Floor New ... (2022)

    Google Scholar 

  15. Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Glioma brain tumor grade classification from MRI using convolutional neural networks designed by modified FA. In: Kahraman, C., Cevik Onar, S., Oztaysi, B., Sari, I.U., Cebi, S., Tolga, A.C. (eds.) INFUS 2020. AISC, vol. 1197, pp. 955–963. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-51156-2_111

    Chapter  Google Scholar 

  16. Bezdan, T., Zivkovic, M., Tuba, E., Strumberger, I., Bacanin, N., Tuba, M.: Multi-objective task scheduling in cloud computing environment by hybridized bat algorithm. In: International Conference on Intelligent and Fuzzy Systems, pp. 718–725 (2020)

    Google Scholar 

  17. Bukumira, M., Antonijevic, M., Jovanovic, D., Zivkovic, M., Mladenovic, D., Kunjadic, G.: Carrot grading system using computer vision feature parameters and a cascaded graph convolutional neural network, vol. 31, p. 061815. SPIE (2022)

    Google Scholar 

  18. Chen, T., et al.: XGBoost: extreme gradient boosting, vol. 1, pp. 1–4 (2015)

    Google Scholar 

  19. Cheng, S., Shi, Y.: Diversity control in particle swarm optimization. In: 2011 IEEE Symposium on Swarm Intelligence, pp. 1–9 (2011)

    Google Scholar 

  20. Dick, S.: Artificial intelligence. PubPub (2019)

    Google Scholar 

  21. El Naqa, I., Murphy, M.J.: What is machine learning? In: El Naqa, I., Li, R., Murphy, M.J. (eds.) Machine Learning in Radiation Oncology, pp. 3–11. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18305-3_1

    Chapter  Google Scholar 

  22. Gumus, M., Kiran, M.S.: Crude oil price forecasting using XGBoost. In: 2017 International Conference on Computer Science and Engineering (UBMK), pp. 1100–1103 (2017)

    Google Scholar 

  23. Heidari, A.A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., Chen, H.: Harris hawks optimization: algorithm and applications. Future Gener. Comput. Syst. 97, 849–872 (2019)

    Article  Google Scholar 

  24. Jovanovic, D., Antonijevic, M., Stankovic, M., Zivkovic, M., Tanaskovic, M., Bacanin, N.: Tuning machine learning models using a group search firefly algorithm for credit card fraud detection. Mathematics 10, 2272 (2022)

    Article  Google Scholar 

  25. Jovanovic, L., Zivkovic, M., Antonijevic, M., Jovanovic, D., Ivanovic, M., Jassim, H.S.: An emperor penguin optimizer application for medical diagnostics. In: 2022 IEEE Zooming Innovation in Consumer Technologies Conference (ZINC), pp. 191–196 (2022)

    Google Scholar 

  26. Karaboga, D.: Artificial bee colony algorithm. Scholarpedia 5, 6915 (2010)

    Article  Google Scholar 

  27. Kiangala, S.K., Wang, Z.: An effective adaptive customization framework for small manufacturing plants using extreme gradient boosting-XGBoost and random forest ensemble learning algorithms in an industry 4.0 environment, vol. 4, p. 100024. Elsevier (2021)

    Google Scholar 

  28. Latha, R.S., Saravana Balaji, B., Bacanin, N., Strumberger, I., Zivkovic, M., Kabiljo, M.: Feature selection using grey wolf optimization with random differential grouping. Comput. Syst. Sci. Eng. 43, pp. 317–332 (2022). https://doi.org/10.32604/csse.2022.020487, http://www.techscience.com/csse/v43n1/47062

  29. Mirjalili, S., Gandomi, A.H., Mirjalili, S.Z., Saremi, S., Faris, H., Mirjalili, S.M.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  30. Mirjalili, S.Z., Mirjalili, S., Saremi, S., Faris, H., Aljarah, I.: Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48, 805–820 (2018)

    Article  Google Scholar 

  31. Mohammed, S., Alkinani, F., Hassan, Y.: Automatic computer aided diagnostic for COVID-19 based on chest X-ray image and particle swarm intelligence. Int. J. Intell. Eng. Syst. 13, 63–73 (2020)

    Google Scholar 

  32. Muslim, M.A., Dasril, Y.: Company bankruptcy prediction framework based on the most influential features using XGBoost and stacking ensemble learning, vol. 11 (2021)

    Google Scholar 

  33. Pham, Q.V., Mirjalili, S., Kumar, N., Alazab, M., Hwang, W.J.: Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Trans. Veh. Technol. 69, 4285–4297 (2020)

    Article  Google Scholar 

  34. Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization: an overview. Swarm Intell. 1, 33–57 (2007)

    Article  Google Scholar 

  35. Rahnamayan, S., Tizhoosh, H.R., Salama, M.M.A.: Quasi-oppositional differential evolution. In: 2007 IEEE Congress on Evolutionary Computation, pp. 2229–2236 (2007). https://doi.org/10.1109/CEC.2007.4424748

  36. Salb, M., Zivkovic, M., Bacanin, N., Chhabra, A., Suresh, M.: Support vector machine performance improvements for cryptocurrency value forecasting by enhanced sine cosine algorithm. In: Bansal, J.C., Engelbrecht, A., Shukla, P.K. (eds.) Computer Vision and Robotics. Algorithms for Intelligent Systems, pp. 527–536. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-8225-4_40

    Chapter  Google Scholar 

  37. Stone-Gross, B., et al.: Your botnet is my botnet: analysis of a botnet takeover. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 635–647 (2009)

    Google Scholar 

  38. Tair, M., Bacanin, N., Zivkovic, M., Venkatachalam, K.: A chaotic oppositional whale optimisation algorithm with firefly search for medical diagnostics. Comput. Mater. Contin. 72, pp. 959–982 (2022). https://doi.org/10.32604/cmc.2022.024989, http://www.techscience.com/cmc/v72n1/46919

  39. Talatahari, S., Bayzidi, H., Saraee, M.: Social network search for global optimization (2021). https://doi.org/10.1109/ACCESS.2021.3091495

  40. Talatahari, S., Bayzidi, H., Saraee, M.: Social network search for global optimization. IEEE Access 9, 92815–92863 (2021). https://doi.org/10.1109/ACCESS.2021.3091495

    Article  Google Scholar 

  41. Wang, G.G., Deb, S., Coelho, L.D.S.: Elephant herding optimization. In: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI), pp. 1–5 (2015)

    Google Scholar 

  42. Wang, G.G., Deb, S., Cui, Z.: Monarch butterfly optimization. Neural Comput. Appl. 31, 1995–2014 (2019)

    Article  Google Scholar 

  43. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1, 67–82 (1997)

    Article  Google Scholar 

  44. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  45. Yang, X.S.: Firefly algorithm, stochastic test functions and design optimisation (2010)

    Google Scholar 

  46. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J. Bio-Inspir. Comput. 3, 267–274 (2011)

    Article  Google Scholar 

  47. Yang, X.S.: Bat algorithm: literature review and applications (2013)

    Google Scholar 

  48. Zivkovic, M., et al.: Hybrid genetic algorithm and machine learning method for COVID-19 cases prediction. In: Shakya, S., Balas, V.E., Haoxiang, W., Baig, Z. (eds.) Proceedings of International Conference on Sustainable Expert Systems. LNNS, vol. 176, pp. 169–184. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-4355-9_14

    Chapter  Google Scholar 

  49. Zivkovic, M., Bacanin, N., Tuba, E., Strumberger, I., Bezdan, T., Tuba, M.: Wireless sensor networks life time optimization based on the improved firefly algorithm. In: 2020 International Wireless Communications and Mobile Computing (IWCMC), pp. 1176–1181 (2020)

    Google Scholar 

  50. Zivkovic, M., et al.: COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc. 66, 102669 (2021)

    Article  Google Scholar 

  51. Zivkovic, M., Jovanovic, L., Ivanovic, M., Krdzic, A., Bacanin, N., Strumberger, I.: Feature selection using modified sine cosine algorithm with COVID-19 dataset. In: Suma, V., Fernando, X., Du, K.-L., Wang, H. (eds.) Evolutionary Computing and Mobile Sustainable Networks. LNDECT, vol. 116, pp. 15–31. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-9605-3_2

    Chapter  Google Scholar 

  52. Zivkovic, M., Stoean, C., Chhabra, A., Budimirovic, N., Petrovic, A., Bacanin, N.: Novel improved salp swarm algorithm: an application for feature selection. Sensors 22, 1711 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nebojsa Bacanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bacanin, N. et al. (2023). Intrusion Detection by XGBoost Model Tuned by Improved Social Network Search Algorithm. In: Simian, D., Stoica, L.F. (eds) Modelling and Development of Intelligent Systems. MDIS 2022. Communications in Computer and Information Science, vol 1761. Springer, Cham. https://doi.org/10.1007/978-3-031-27034-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27034-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27033-8

  • Online ISBN: 978-3-031-27034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics