Skip to main content

Classification of Microstructure Images of Metals Using Transfer Learning

  • Conference paper
  • First Online:
Modelling and Development of Intelligent Systems (MDIS 2022)

Abstract

This research focuses on the application of computer vision to the field of material science. Deep learning (DL) is revolutionizing the field of computer vision by achieving state-of-the-art results for various vision tasks. The objective of this work is to study the performance of deep transfer learned models for the classification of microstructure images. With light optical microscopes, microstructure images of four different metals were acquired for this task, including copper, mild steel, aluminum, and stainless steel. The proposed work employs transfer learned powerful pre-trained convolutional neural network (CNN) models namely VGG16, VGG19, ResNet50, DenseNet121, DenseNet169 and DenseNet201 to train and classify the images in the acquired dataset into different classes of metals. The results showed that the transfer learned ResNet50 model has obtained the highest accuracy of 99%, outperforming other transfer learning models. This also shows that DL models can be used for automatic metal classification using microstructure images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhadeshia, H., Honeycombe, R.: Steels: Microstructure and Properties. Butterworth-Heinemann, Oxford (2017)

    Google Scholar 

  2. Lin, C.Y., Wirtz, T., LaMarca, F., Hollister, S.J.: Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J. Biomed. Mater. Res. 83(2), 272–279 (2007)

    Article  Google Scholar 

  3. Kruth, J.P., Mercelis, P., Van Vaerenbergh, J., Froyen, L., Rombouts, M.: Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp. J. 11(1), 26–36 (2005)

    Article  Google Scholar 

  4. Chowdhury, A., Kautz, E., Yener, B., Lewis, D.: Image driven machine learning methods for microstructure recognition. Comput. Mater. Sci. 123, 176–187 (2016)

    Article  Google Scholar 

  5. German, R.M.: Coarsening in sintering: grain shape distribution, grain size distribution, and grain growth kinetics in solid-pore systems. Crit. Rev. Solid State Mater. Sci. 35(4), 263–305 (2010)

    Article  Google Scholar 

  6. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  7. https://www.nasa.gov/centers/wstf/supporting_capabilities/materials_testing/microstructural_analysis.html. Accessed 05 Dec 2022

  8. Azimi, S.M., Britz, D., Engstler, M., Fritz, M., Mücklich, F.: Advanced steel microstructural classification by deep learning methods. Sci. Rep. 8(1), 1–14 (2018)

    Article  Google Scholar 

  9. Pokuri, B.S.S., Ghosal, S., Kokate, A., Sarkar, S., Ganapathysubramanian, B.: Interpretable deep learning for guided microstructure-property explorations in photovoltaics. NPJ Comput. Mater. 5(1), 1–11 (2019)

    Article  Google Scholar 

  10. Pazdernik, K., LaHaye, N.L., Artman, C.M., Zhu, Y.: Microstructural classification of unirradiated LiAlO2 pellets by deep learning methods. Comput. Mater. Sci. 181, 109728 (2020)

    Article  Google Scholar 

  11. Baskaran, A., Kane, G., Biggs, K., Hull, R., Lewis, D.: Adaptive characterization of microstructure dataset using a two stage machine learning approach. Comput. Mater. Sci. 177, 109593 (2020)

    Article  Google Scholar 

  12. Shen, C., Wang, C., Huang, M., Xu, N., van der Zwaag, S., Xu, W.: A generic high-throughput microstructure classification and quantification method for regular SEM images of complex steel microstructures combining EBSD labeling and deep learning. J. Mater. Sci. Technol. 93, 191–204 (2021)

    Article  Google Scholar 

  13. Ma, W., et al.: Image-driven discriminative and generative machine learning algorithms for establishing microstructure–processing relationships. J. Appl. Phys. 128(13), 134901 (2020)

    Article  Google Scholar 

  14. Zaloga, A.N., Stanovov, V.V., Bezrukova, O.E., Dubinin, P.S., Yakimov, I.S.: Crystal symmetry classification from powder X-ray diffraction patterns using a convolutional neural network. Mater. Today Commun. 25, 101662 (2020)

    Article  Google Scholar 

  15. Roberts, G., Haile, S.Y., Sainju, R., Edwards, D.J., Hutchinson, B., Zhu, Y.: Deep learning for semantic segmentation of defects in advanced STEM images of steels. Sci. Rep. 9(1), 1–12 (2019)

    Article  Google Scholar 

  16. Dong, H., et al.: A deep convolutional neural network for real-time full profile analysis of big powder diffraction data. NPJ Comput. Mater. 7(1), 1–9 (2021)

    Article  Google Scholar 

  17. Maemura, T., et al.: Interpretability of deep learning classification for low-carbon steel microstructures. Mater. Trans. 61(8), 1584–1592 (2020)

    Article  Google Scholar 

  18. Tammina, S.: Transfer learning using VGG-16 with deep convolutional neural network for classifying images. Int. J. Sci. Res. Publ. 9(10), 143–150 (2019)

    Google Scholar 

  19. Mateen, M., Wen, J., Song, S., Huang, Z.: Fundus image classification using VGG-19 architecture with PCA and SVD. Symmetry 11(1), 1 (2018)

    Article  Google Scholar 

  20. Wen, L., Li, X., Gao, L.: A transfer convolutional neural network for fault diagnosis based on ResNet-50. Neural Comput. Appl. 32(10), 6111–6124 (2019). https://doi.org/10.1007/s00521-019-04097-w

    Article  Google Scholar 

  21. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708, IEEE, Honolulu, HI, USA (2017)

    Google Scholar 

  22. Huang, G., et al.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  23. Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., Mittal, A.: Pneumonia detection using CNN based feature extraction. In: 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–7. IEEE (2019)

    Google Scholar 

  24. Jaiswal, A., Gianchandani, N., Singh, D., Kumar, V., Kaur, M.: Classification of the COVID-19 infected patients using DenseNet201 based deep transfer learning. J. Biomol. Struct. Dyn. 39(15), 5682–5689 (2021)

    Article  Google Scholar 

  25. Medium Homepage: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53. Accessed 05 Dec 2022

  26. Medium Homepage: https://medium.com/@shaoliang.jia/vanishing-gradient-vs-degradation-b719594b6877. Accessed 05 Dec 2022

    Google Scholar 

  27. Gola, J., et al.: Objective microstructure classification by support vector machine (SVM) using a combination of morphological parameters and textural features for low carbon steels. Comput. Mater. Sci. 160, 186–196 (2019)

    Article  Google Scholar 

  28. Sabnis, H., Angel Arul Jothi, J., Deva Prasad, A.M.: Microstructure image classification of metals using texture features and machine learning. In: Patel, K.K., Doctor, G., Patel, A., Lingras, P. (eds.) Soft Computing and its Engineering Applications. icSoftComp 2021. CCIS, vol. 1572, pp. 235–248. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-05767-0_19

    Chapter  Google Scholar 

  29. Medium Homepage: https://towardsdatascience.com/resnets-why-do-they-perform-better-than-classic-convnets-conceptual-analysis-6a9c82e06e53. Accessed 05 Dec 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Abdul Hafeez Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, M.A.H., Sabnis, H., Jothi, J.A.A., Kanishkha, J., Prasad, A.M.D. (2023). Classification of Microstructure Images of Metals Using Transfer Learning. In: Simian, D., Stoica, L.F. (eds) Modelling and Development of Intelligent Systems. MDIS 2022. Communications in Computer and Information Science, vol 1761. Springer, Cham. https://doi.org/10.1007/978-3-031-27034-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27034-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27033-8

  • Online ISBN: 978-3-031-27034-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics