Skip to main content

Learning the Propagation of Worms in Wireless Sensor Networks

  • Conference paper
  • First Online:
Wireless Internet (WiCON 2022)

Abstract

Wireless sensor networks (WSNs) are composed of spatially distributed sensors and are considered vulnerable to attacks by worms and their variants. Due to the distinct strategies of worms propagation, the dynamic behavior varies depending on the different features of the sensors. Modeling the spread of worms can help us understand the worm attack behaviors and analyze the propagation procedure. In this paper, we design a communication model under various worms. We aim to learn our proposed model to analytically derive the dynamics of competitive worms propagation. We develop a new searching space combined with complex neural network models. Furthermore, the experiment results verified our analysis and demonstrated the performance of our proposed learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://db.csail.mit.edu/labdata/labdata.html.

References

  1. Abdel-Gawad, H.I., Baleanu, D., Abdel-Gawad, A.H.: Unification of the different fractional time derivatives: an application to the epidemic-antivirus dynamical system in computer networks. Chaos, Solitons Fractals 142, 110416 (2021)

    Article  MathSciNet  Google Scholar 

  2. Achar, S.J., Baishya, C., Kaabar, M.K.: Dynamics of the worm transmission in wireless sensor network in the framework of fractional derivatives. Math. Methods Appl. Sci. 45(8), 4278–4294 (2022)

    Article  MathSciNet  Google Scholar 

  3. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)

    Article  Google Scholar 

  4. Awasthi, S., Kumar, N., Srivastava, P.K.: A study of epidemic approach for worm propagation in wireless sensor network. In: Solanki, V.K., Hoang, M.K., Lu, Z.J., Pattnaik, P.K. (eds.) Intelligent Computing in Engineering. AISC, vol. 1125, pp. 315–326. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2780-7_36

    Chapter  Google Scholar 

  5. Bassey, J., Qian, L., Li, X.: A survey of complex-valued neural networks. arXiv preprint arXiv:2101.12249 (2021)

  6. Behal, K.S., Gakkhar, S., Srivastava, T.: Dynamics of virus-patch model with latent effect. Int. J. Comput. Math. 99, 1–16 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chakrabarti, D., Leskovec, J., Faloutsos, C., Madden, S., Guestrin, C., Faloutsos, M.: Information survival threshold in sensor and p2p networks. In: IEEE INFOCOM 2007–26th IEEE International Conference on Computer Communications, pp. 1316–1324. IEEE (2007)

    Google Scholar 

  8. Erdös, P.: Graph theory and probability. Can. J. Math. 11, 34–38 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Galluccio, L., Morabito, G.: Impact of worm propagation on vehicular sensor networks exploiting v2v communications. In: 2019 International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 1–6. IEEE (2019)

    Google Scholar 

  10. Gulati, K., Boddu, R.S.K., Kapila, D., Bangare, S.L., Chandnani, N., Saravanan, G.: A review paper on wireless sensor network techniques in internet of things (IoT). Mater. Today Proc. 51, 161–165 (2021)

    Article  Google Scholar 

  11. Haghighi, M.S., Wen, S., Xiang, Y., Quinn, B., Zhou, W.: On the race of worms and patches: modeling the spread of information in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 11(12), 2854–2865 (2016)

    Article  Google Scholar 

  12. Han, X., Tan, Q.: Dynamical behavior of computer virus on internet. Appl. Math. Comput. 217(6), 2520–2526 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Hirose, A., Yoshida, S.: Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence. IEEE Trans. Neural Netw. Learn. Syst. 23(4), 541–551 (2012)

    Article  Google Scholar 

  14. Hu, Z., Wang, H., Liao, F., Ma, W.: Stability analysis of a computer virus model in latent period. Chaos, Solitons Fractals 75, 20–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kephart, J.O., White, S.R., Chess, D.M.: IEEE spectrum. Comput. Epidemiol. 30(5), 20–26 (1993)

    Google Scholar 

  16. Khanh, N.H.: Dynamics of a worm propagation model with quarantine in wireless sensor networks. Appl. Math. Inf. Sci 10(5), 1739–1746 (2016)

    Article  Google Scholar 

  17. Krishnamachari, B.: Networking Wireless Sensors. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  18. Matthès, M.W., Bromberg, Y., de Rosny, J., Popoff, S.M.: Learning and avoiding disorder in multimode fibers. Phys. Rev. X 11(2), 021060 (2021)

    Google Scholar 

  19. Mishra, B.K., Keshri, N.: Mathematical model on the transmission of worms in wireless sensor network. Appl. Math. Model. 37(6), 4103–4111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mishra, B.K., Tyagi, I.: Defending against malicious threats in wireless sensor network: a mathematical model. Int. J. Inf. Technol. Comput. Sci. 6(3), 12–19 (2014)

    Google Scholar 

  21. Mishra, B.K., Srivastava, S.K., Mishra, B.K.: A quarantine model on the spreading behavior of worms in wireless sensor network. Trans. IoT Cloud Comput. 2(1), 1–12 (2014)

    Google Scholar 

  22. Nain, M., Goyal, N.: Localization techniques in underwater wireless sensor network. In: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 747–751. IEEE (2021)

    Google Scholar 

  23. Narasimhan, H., Parkes, D.C., Singer, Y.: Learnability of influence in networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  24. Nwokoye, C., Umeugoji, C., Umeh, I.: Evaluating degrees of differential infections on sensor networks’ features using the sejijr-v epidemic model. Egypt. Comput. Sci. J. 44(3) (2020)

    Google Scholar 

  25. Nwokoye, C.N.H., Madhusudanan, V.: Epidemic models of malicious-code propagation and control in wireless sensor networks: an indepth review. Wirel. Per. Commun. 125, 1–30 (2022). https://doi.org/10.1007/s11277-022-09636-8

    Article  Google Scholar 

  26. Ojha, R.P., Srivastava, P.K., Sanyal, G., Gupta, N.: Improved model for the stability analysis of wireless sensor network against malware attacks. Wirel. Pers. Commun. 116(3), 2525–2548 (2021)

    Article  Google Scholar 

  27. Qin, P.: Analysis of a model for computer virus transmission. Math. Prob. Eng. 2015 (2015)

    Google Scholar 

  28. Rajesh, B., Reddy, Y.J., Reddy, B.D.K.: A survey paper on malicious computer worms. Int. J. Adv. Res. Comput. Sci. Technol. 3(2), 161–167 (2015)

    Google Scholar 

  29. Regin, R., Rajest, S.S., Singh, B.: Fault detection in wireless sensor network based on deep learning algorithms. EAI Trans. Scalable Inf. Syst. 8, e8 (2021)

    Google Scholar 

  30. Srivastava, A.P., Awasthi, S., Ojha, R.P., Srivastava, P.K., Katiyar, S.: Stability analysis of SIDR model for worm propagation in wireless sensor network. Indian J. Sci. Technol. 9(31), 1–5 (2016)

    Google Scholar 

  31. Trabelsi, C., et al.: Deep complex networks. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=H1T2hmZAb

  32. Wang, X., Li, Q., Li, Y.: EiSiRS: a formal model to analyze the dynamics of worm propagation in wireless sensor networks. J. Comb. Optim. 20(1), 47–62 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Y., Tong, G.: Learnability of competitive threshold models. In: Raedt, L.D. (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 3985–3991. International Joint Conferences on Artificial Intelligence Organization (2022). https://doi.org/10.24963/ijcai.2022/553. main Track

  34. Wang, Y., Wen, S., Cesare, S., Zhou, W., Xiang, Y.: The microcosmic model of worm propagation. Comput. J. 54(10), 1700–1720 (2011)

    Article  Google Scholar 

  35. Wang, Y., Wen, S., Xiang, Y., Zhou, W.: Modeling the propagation of worms in networks: a survey. IEEE Commun. Surv. Tutorials 16(2), 942–960 (2013)

    Article  Google Scholar 

  36. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: A taxonomy of computer worms. In: Proceedings of the 2003 ACM workshop on Rapid Malcode, pp. 11–18 (2003)

    Google Scholar 

  37. Yao, Y., Sheng, C., Fu, Q., Liu, H., Wang, D.: A propagation model with defensive measures for PLC-PC worms in industrial networks. Appl. Math. Model. 69, 696–713 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zarin, R., Khaliq, H., Khan, A., Khan, D., Akgül, A., Humphries, U.W.: Deterministic and fractional modeling of a computer virus propagation. Results Phys. 33, 105130 (2022)

    Article  Google Scholar 

  39. Zou, C.C., Towsley, D., Gong, W., Cai, S.: Routing worm: A fast, selective attack worm based on IP address information. In: Workshop on Principles of Advanced and Distributed Simulation (PADS’05), pp. 199–206. IEEE (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Wang, S., Tong, G. (2023). Learning the Propagation of Worms in Wireless Sensor Networks. In: Haas, Z.J., Prakash, R., Ammari, H., Wu, W. (eds) Wireless Internet. WiCON 2022. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 464. Springer, Cham. https://doi.org/10.1007/978-3-031-27041-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27041-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27040-6

  • Online ISBN: 978-3-031-27041-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics