Abstract
In PATH SET PACKING, the input is an undirected graph G, a collection \(\mathcal{P}\) of simple paths in G, and a positive integer k. The problem is to decide whether there exist k edge-disjoint paths in \(\mathcal{P}\). We study the parameterized complexity of PATH SET PACKING with respect to both natural and structural parameters. We show that the problem is W[1]-hard with respect to vertex cover plus the maximum length of a path in \(\mathcal{P}\), and W[1]-hard with respect to pathwidth plus maximum degree plus solution size. These results answer an open question raised in [17]. On the positive side, we present an FPT algorithm parameterized by feedback vertex set plus maximum degree, and also provide an FPT algorithm parameterized by treewidth plus maximum degree plus maximum length of a path in \(\mathcal{P}\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The proofs of statements marked with a \(\star \) have been omitted.
References
Abu-Khzam, F.N.: An improved kernelization algorithm for r-set packing. Inf. Process. Lett. 110(16), 621–624 (2010)
Arnborg, S., Proskurowski, A.: Linear time algorithms for np-hard problems restricted to partial k-trees. Discret. Appl. Math. 23(1), 11–24 (1989)
Bessy, S., Bougeret, M., Chaplick, S., Gonçalves, D., Paul, C.: On independent set in B1-EPG graphs. Discret. Appl. Math. 278, 62–72 (2020)
Cygan, M., et al.: Parameterized Algorithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-21275-3
Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science, Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0515-9
Epstein, D., Golumbic, M.C., Morgenstern, G.: Approximation algorithms for \(B_{1}\)-EPG graphs. In: Dehne, F., Solis-Oba, R., Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 328–340. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40104-6_29
Fellows, M.R., Hermelin, D., Rosamond, F.A., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)
Garey, M.R., Johnson, D.S.: The rectilinear steiner tree problem is \$np\$-complete. SIAM J. Appl. Math. 32(4), 826–834 (1977)
Golumbic, M.C., Jamison, R.E.: Edge and vertex intersection of paths in a tree. Discret. Math. 55(2), 151–159 (1985)
Golumbic, M.C., Jamison, R.E.: The edge intersection graphs of paths in a tree. J. Comb. Theory Ser. B 38(1), 8–22 (1985)
Golumbic, M.C., Lipshteyn, M., Stern, M.: Edge intersection graphs of single bend paths on a grid. Networks 54(3), 130–138 (2009)
Jansen, B.M.P.: On structural parameterizations of hitting set: hitting paths in graphs using 2-SAT. In: Mayr, E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 472–486. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53174-7_33
Jia, W., Zhang, C., Chen, J.: An efficient parameterized algorithm for m-set packing. J. Algorithms 50(1), 106–117 (2004)
Koutis, I.: A faster parameterized algorithm for set packing. Inf. Process. Lett. 94(1), 7–9 (2005)
Tarjan, R.E.: Decomposition by clique separators. Discret. Math. 55(2), 221–232 (1985)
Xu, C., Zhang, G.: The path set packing problem. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 305–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1_26
Acknowledgements
We thank anonymous reviewers of this and an earlier version of this paper for useful suggestions.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Aravind, N.R., Saxena, R. (2023). Parameterized Complexity of Path Set Packing. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-27051-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27050-5
Online ISBN: 978-3-031-27051-2
eBook Packages: Computer ScienceComputer Science (R0)