Skip to main content

Structural Parameterization of Cluster Deletion

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2023)

Abstract

In the weighted Cluster Deletion problem we are given a graph with non-negative integral edge weights and the task is to determine, for a target value k, if there is a set of edges of total weight at most k such that its removal results in a disjoint union of cliques. It is well-known that the problem is FPT parameterized by k, the total weight of edge deletions. In scenarios in which the solution size is large, naturally one needs to drop the constraint on the solution size. Here we study weighted Cluster Deletion where there is no bound on the size of the solution, but the parameter captures structural properties of the input graph. Our main contribution is to classify the parameterized complexity of weighted Cluster Deletion with three structural parameters, namely, vertex cover, twin cover and neighborhood diversity. We show that the problem is FPT when parameterized by the vertex cover, whereas it becomes paraNP-hard when parameterized by the twin cover or the neighborhood diversity. To illustrate the applicability of our FPT result, we use it in order to show that the unweighted variant of the problem, Cluster Deletion, is FPT parameterized by the twin cover. This is the first algorithm with single-exponential running time parameterized by the twin cover. Interestingly, we are able to achieve an FPT result parameterized by the neighborhood diversity that involves an ILP formulation. In fact, our results generalize the parameterized setting by the solution size, as we deduce that both parameters, twin cover and neighborhood diversity, are linearly bounded by the number of edge deletions.

G. F. Italiano—Partially supported by MUR, the Italian Ministry for University and Research, under PRIN Project AHeAD (Efficient Algorithms for HArnessing Networked Data).

C. Papadopoulos—Supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers and the procurement of high-cost research grant”, Project FANTA (eFficient Algorithms for NeTwork Analysis), number HFRI-FM17-431.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In general the applicability of Theorem 5.1 has revealed close connections between FPT and ILP (see for e.g. [10]).

References

  1. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004). https://doi.org/10.1023/b:mach.0000033116.57574.95

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Dor, A., Shamir, R., Yakhini, Z.: Clustering gene expression patterns. J. Comput. Biol. 6, 281–297 (1999)

    Article  Google Scholar 

  3. Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410, 5467–5480 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnet, É., Sikora, F.: The graph motif problem parameterized by the structure of the input graph. Discrete Appl. Math. 231, 78–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bonomo, F., Durán, G., Valencia-Pabon, M.: Complexity of the cluster deletion problem on subclasses of chordal graphs. Theor. Comput. Sci. 600, 59–69 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58, 171–176 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y., Chen, J.: Cluster editing: kernelization based on edge cuts. Algorithmica 64(1), 152–169 (2012). https://doi.org/10.1007/s00453-011-9595-1

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y., Ke, Y.: Improved kernels for edge modification problems. In: Proceedings of IPEC 2021, pp. 1–14 (2021)

    Google Scholar 

  9. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  MATH  Google Scholar 

  11. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM J. Comput. 23, 864–894 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Doucha, M., Kratochvíl, J.: Cluster vertex deletion: a parameterization between vertex cover and clique-width. In: Proceedings of MFCS 2012, vol. 7464, pp. 348–359 (2012). https://doi.org/10.1007/978-3-642-32589-2

  13. Frank, A., Tardos, É.: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7, 49–65 (1987). https://doi.org/10.1007/BF02579200

    Article  MathSciNet  MATH  Google Scholar 

  14. Ganian, R.: Twin-cover: beyond vertex cover in parameterized algorithmics. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28050-4_21

    Chapter  MATH  Google Scholar 

  15. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor. Comput. Sci. 17(2), 77–100 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Gao, Y., Hare, D.R., Nastos, J.: The cluster deletion problem for cographs. Discrete Math. 313, 2763–2771 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-parameter algorithms for clique generation. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) CIAC 2003. LNCS, vol. 2653, pp. 108–119. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44849-7_17

    Chapter  MATH  Google Scholar 

  18. GrĂĽttemeier, N., Komusiewicz, C.: On the relation of strong triadic closure and cluster deletion. Algorithmica 82(4), 853–880 (2019). https://doi.org/10.1007/s00453-019-00617-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Lenstra, J.H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160, 2259–2270 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Komusiewicz, C., Uhlmann, J.: Alternative parameterizations for cluster editing. In: Černá, I., et al. (eds.) SOFSEM 2011. LNCS, vol. 6543, pp. 344–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18381-2_29

    Chapter  Google Scholar 

  22. Konstantinidis, A.L., Papadopoulos, C.: Maximizing the strong triadic closure in split graphs and proper interval graphs. Discrete Appl. Math. 285, 79–95 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Konstantinidis, A.L., Papadopoulos, C.: Cluster deletion on interval graphs and split related graphs. Algorithmica 83(7), 2018–2046 (2021). https://doi.org/10.1007/s00453-021-00817-8

    Article  MathSciNet  MATH  Google Scholar 

  24. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012). https://doi.org/10.1007/s00453-011-9554-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Li, P., Puleo, G.J., Milenkovic, O.: Motif and hypergraph correlation clustering. IEEE Trans. Inf. Theor. 66, 3065–3078 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144, 173–182 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tsur, D.: Cluster deletion revisited. Inf. Process. Lett. 173, 106171 (2022)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios L. Konstantinidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Italiano, G.F., Konstantinidis, A.L., Papadopoulos, C. (2023). Structural Parameterization of Cluster Deletion. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27051-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27050-5

  • Online ISBN: 978-3-031-27051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics