Skip to main content

Flipping Plane Spanning Paths

  • Conference paper
  • First Online:
WALCOM: Algorithms and Computation (WALCOM 2023)

Abstract

Let S be a planar point set in general position, and let \(\mathcal {P}(S)\) be the set of all plane straight-line paths with vertex set S. A flip on a path \(P \in \mathcal {P}(S)\) is the operation of replacing an edge e of P with another edge f on S to obtain a new valid path from \(\mathcal {P}(S)\). It is a long-standing open question whether for every given point set S, every path from \(\mathcal {P}(S)\) can be transformed into any other path from \(\mathcal {P}(S)\) by a sequence of flips. To achieve a better understanding of this question, we show that it is sufficient to prove the statement for plane spanning paths whose first edge is fixed. Furthermore, we provide positive answers for special classes of point sets, namely, for wheel sets and generalized double circles (which include, e.g., double chains and double circles).

This work was initiated at the 2nd Austrian Computational Geometry Reunion Workshop in Strobl, June 2021. We thank all participants for fruitful discussions. J.O. is supported by ERC StG 757609. O.A. and R.P. are supported by FWF grant W1230. B.V. is supported by FWF Project I 3340-N35. K.K. is supported by the German Science Foundation (DFG) within the research training group ‘Facets of Complexity’ (GRK 2434). W.M. is partially supported by the German Research Foundation within the collaborative DACH project Arrangements and Drawings as DFG Project MU 3501/3-1, and by ERC StG 757609.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The source code is available at https://github.com/jogo23/flipping_plane_spanning_paths.

References

  1. Aichholzer, O., Aurenhammer, F., Krasser, H.: Enumerating order types for small point sets with applications. Order 19, 265–281 (2002). https://doi.org/10.1023/A:1021231927255

    Article  MathSciNet  MATH  Google Scholar 

  2. Aichholzer, O., Knorr, K., Mulzer, W., Obenaus, J., Paul, R., Vogtenhuber, B.: Flipping plane spanning paths (2022). https://doi.org/10.48550/ARXIV.2202.10831

  3. Akl, S.G., Islam, M.K., Meijer, H.: On planar path transformation. Inf. Process. Lett. 104(2), 59–64 (2007). https://doi.org/10.1016/j.ipl.2007.05.009

    Article  MathSciNet  MATH  Google Scholar 

  4. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. 42(1), 60–80 (2009). https://doi.org/10.1016/j.comgeo.2008.04.001

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang, J.M., Wu, R.Y.: On the diameter of geometric path graphs of points in convex position. Inf. Process. Lett. 109(8), 409–413 (2009). https://doi.org/10.1016/j.ipl.2008.12.017

    Article  MathSciNet  MATH  Google Scholar 

  6. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings. Graphs Comb. 18(3), 517–532 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Houle, M., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations and perfect matchings. Graphs Comb. 21, 325–331 (2005). https://doi.org/10.1007/s00373-005-0615-2

    Article  MathSciNet  MATH  Google Scholar 

  8. Lawson, C.L.: Transforming triangulations. Discret. Math. 3(4), 365–372 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  9. Nichols, T.L., Pilz, A., Tóth, C.D., Zehmakan, A.N.: Transition operations over plane trees. Discret. Math. 343(8), 111929 (2020). https://doi.org/10.1016/j.disc.2020.111929

    Article  MathSciNet  MATH  Google Scholar 

  10. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4) (2018). https://doi.org/10.3390/a11040052

  11. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen Mathematiker-Vereinigung 46, 26–32 (1936). http://eudml.org/doc/146109

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Johannes Obenaus or Rosna Paul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichholzer, O., Knorr, K., Mulzer, W., Obenaus, J., Paul, R., Vogtenhuber, B. (2023). Flipping Plane Spanning Paths. In: Lin, CC., Lin, B.M.T., Liotta, G. (eds) WALCOM: Algorithms and Computation. WALCOM 2023. Lecture Notes in Computer Science, vol 13973. Springer, Cham. https://doi.org/10.1007/978-3-031-27051-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27051-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27050-5

  • Online ISBN: 978-3-031-27051-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics