Skip to main content

Floor Plan Analysis and Vectorization with Multimodal Information

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

Abstract

Floor plan analysis and vectorization are of practical importance in real estate and interior design fields. The analysis usually serves as a preliminary to the vectorization by extracting structural elements and room layouts. However, existing analysis methods mainly focus on the visual modality, which is insufficient for identifying rooms due to the lack of semantic clues about room types. On the other hand, standard floor plan images have rich textual annotations that provide semantic guidance of room layouts. Motivated by this fact, we propose a multimodal segmentation network (OCR)\(^2\) that exploits additional textual information for the analysis of floor plan images. Specifically, we extract texts that indicate the room layouts with optical character recognition (OCR) and fuse them with visual features by a cross-attention mechanism. Thereafter, we further optimize the state-of-the-art vectorization method in efficiency by (1) replacing the gradient-descent steps with the fast principle components analysis (PCA) to convert doors and windows, and (2) removing the unnecessary iterative steps when extracting room contours. Both quantitative and qualitative experiments validate the effectiveness and efficiency of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Improved automatic analysis of architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 864–869. IEEE (2011)

    Google Scholar 

  2. Ahmed, S., Liwicki, M., Weber, M., Dengel, A.: Automatic room detection and room labeling from architectural floor plans. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 339–343. IEEE (2012)

    Google Scholar 

  3. Ahmed, S., Weber, M., Liwicki, M., Dengel, A.: Text/graphics segmentation in architectural floor plans. In: 2011 International Conference on Document Analysis and Recognition, pp. 734–738. IEEE (2011)

    Google Scholar 

  4. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  5. Dodge, S., Xu, J., Stenger, B.: Parsing floor plan images. In: 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), pp. 358–361. IEEE (2017)

    Google Scholar 

  6. Dosch, P., Tombre, K., Ah-Soon, C., Masini, G.: A complete system for the analysis of architectural drawings. Int. J. Doc. Anal. Recogn. 3(2), 102–116 (2000)

    Article  Google Scholar 

  7. Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica Int. J. Geographic Inf. Geovisual. 10(2), 112–122 (1973)

    Article  Google Scholar 

  8. de las Heras, L.P., Ahmed, S., Liwicki, M., Valveny, E., Sánchez, G.: Statistical segmentation and structural recognition for floor plan interpretation. Int. J. Doc. Anal. Recogn. (IJDAR) 17(3), 221–237 (2014)

    Google Scholar 

  9. Liu, C., Wu, J., Kohli, P., Furukawa, Y.: Raster-to-vector: revisiting floorplan transformation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2195–2203 (2017)

    Google Scholar 

  10. Liu, S., Li, T., Chen, W., Li, H.: Soft rasterizer: a differentiable renderer for image-based 3d reasoning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7708–7717 (2019)

    Google Scholar 

  11. Lv, X., Zhao, S., Yu, X., Zhao, B.: Residential floor plan recognition and reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16717–16726 (2021)

    Google Scholar 

  12. Macé, S., Locteau, H., Valveny, E., Tabbone, S.: A system to detect rooms in architectural floor plan images. In: Proceedings of the 9th IAPR International Workshop on Document Analysis Systems, pp. 167–174 (2010)

    Google Scholar 

  13. Or, S.H., Wong, K.H., Yu, Y.K., Chang, M.M.V., Kong, H.: Highly automatic approach to architectural floorplan image understanding & model generation. Pattern Recogn. pp. 25–32 (2005)

    Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8024–8035. Curran Associates, Inc. (2019), https://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  15. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Surikov, I.Y., Nakhatovich, M.A., Belyaev, S.Y., Savchuk, D.A.: Floor plan recognition and vectorization using combination UNet, Faster-RCNN, statistical component analysis and Ramer-Douglas-Peucker. In: Chaubey, N., Parikh, S., Amin, K. (eds.) COMS2 2020. CCIS, vol. 1235, pp. 16–28. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-6648-6_2

    Chapter  Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  18. Yuan, Y., Chen, X., Wang, J.: Object-contextual representations for semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 173–190. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_11

    Chapter  Google Scholar 

  19. Zeng, Z., Li, X., Yu, Y.K., Fu, C.W.: Deep floor plan recognition using a multi-task network with room-boundary-guided attention. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9096–9104 (2019)

    Google Scholar 

  20. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

  21. Ziran, Z., Marinai, S.: Object detection in floor plan images. In: Pancioni, L., Schwenker, F., Trentin, E. (eds.) ANNPR 2018. LNCS (LNAI), vol. 11081, pp. 383–394. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99978-4_30

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. U1903214, 61876135, 61862015). The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wen, T., Liang, C., Fu, YM., Xiao, CX., Xiang, HM. (2023). Floor Plan Analysis and Vectorization with Multimodal Information. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics