Skip to main content

Safe Contrastive Clustering

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

  • 1381 Accesses

Abstract

Contrastive clustering is an effective deep clustering approach, which learns both instance-level consistency and cluster-level consistency in a contrastive learning fashion. However, the strategies of data augmentation used by contrastive clustering is an important prior knowledge such that inappropriate strategies may severely cause performance degradation. By converting the different strategies of data augmentations into a multi-view problem, we propose a safe contrastive clustering method which is guaranteed to alleviate the reliance on prior knowledge of data augmentations. The proposed method can maximize the complementary information between these different views and minimize the noise caused by the inferior views. Such a method addresses the safeness that contrastive clustering with multiple data augmentation strategies is no worse than that with one of those strategies. Moreover, we provide the theoretical guarantee that the proposed method can achieve empirical safeness. Extensive experiments demonstrate that our method can reach safe contrastive clustering on popular benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.B.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  3. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: SCAN: learning to classify images without labels. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 268–285. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_16

    Chapter  Google Scholar 

  4. Li, Y., et al.: Contrastive clustering. In: AAAI (2021)

    Google Scholar 

  5. Zhong, H., et al.: Graph contrastive clustering. In: ICCV (2021)

    Google Scholar 

  6. Dizaji, K.G., Herandi, A., Deng, C., (Tom) Cai, W., Huang, H.: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization. In: ICCV (2017)

    Google Scholar 

  7. Ji, P., Zhang, T., Li, H., Salzmann, M., Reid, I.D.: Deep subspace clustering networks. In: NeurIPS (2017)

    Google Scholar 

  8. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 139–156. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_9

    Chapter  Google Scholar 

  9. Hu, W., Miyato, T., Tokui, S., Matsumoto, E., Sugiyama, M.: Learning discrete representations via information maximizing self-augmented training. In: ICML (2017)

    Google Scholar 

  10. Ji, X., Vedaldi, A., Henriques, J.F.: Invariant information clustering for unsupervised image classification and segmentation. In: CVPR (2019)

    Google Scholar 

  11. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel programming for hyperparameter optimization and meta-learning. In: ICML (2018)

    Google Scholar 

  12. Li, Y.-F., Zhou, Z.-H.: Towards making unlabeled data never hurt. IEEE TPAMI 37, 175–188 (2015)

    Article  Google Scholar 

  13. Li, Y.-F., Zha, H., Zhou, Z.-H.: Learning safe prediction for semi-supervised regression. In: AAAI (2017)

    Google Scholar 

  14. Guo, L.-Z., Zhang, Z.-Y., Jiang, Y., Li, Y.-F., Zhou, Z.H.: Safe deep semi-supervised learning for unseen-class unlabeled data. In: ICML (2016)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Trosten, D.J., Løkse, S., Jenssen, R., Kampffmeyer, M.C.: Reconsidering representation alignment for multi-view clustering. In: CVPR (2021)

    Google Scholar 

  17. Kampffmeyer, M.C., Løkse, S., Bianchi, F.M., Livi, L.F., Salberg, A.-B., Jenssen, R.: Deep divergence-based approach to clustering. Neural Netw. 13, 91–101 (2019)

    Article  Google Scholar 

  18. Tang, H., Liu, Y.: Deep safe multi-view clustering: reducing the risk of clustering performance degradation caused by view increase. In: CVPR (2022)

    Google Scholar 

  19. Li, Y.-F., Guo, L.-Z., Zhou, Z.-H.: Towards safe weakly supervised learning. IEEE TPAMI 43, 334–346 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities, and the Research Funds of Renmin University of China (2021030199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, P., Tang, H., Wang, W., Liu, Y. (2023). Safe Contrastive Clustering. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics