Skip to main content

SRes-NeRF: Improved Neural Radiance Fields for Realism and Accuracy of Specular Reflections

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

Abstract

The Neural Radiance Fields (NeRF) is a popular view synthesis technique that represents a scene using a multilayer perceptron (MLP) combined with classic volume rendering and uses positional encoding techniques to increase image resolution. Although it can effectively represent the appearance of a scene, they often fail to accurately capture and reproduce the specular details of surfaces and require a lengthy training time ranging from hours to days for a single scene. We address this limitation by introducing a representation consisting of a density voxel grid and an enhanced MLP for a complex view-dependent appearance and model acceleration. Modeling with explicit and discretized volume representations is not new, but we propose Swish Residual MLP (SResMLP). Compared with the standard MLP+ReLU network, the introduction of layer scale module allows the shallow information of the network to be transmitted to the deep layer more accurately, maintaining the consistency of features. Introduce affine layers to stabilize training, accelerate convergence and use the Swish activation function instead of ReLU. Finally, an evaluation of four inward-facing benchmarks shows that our method surpasses NeRF’s quality, it only takes about 18 min to train from scratch for a new scene and accuracy capture the specular details of the scene surface. Excellent performance even without positional encoding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barron, J.T., Mildenhall, B., Tancik, M., Hedman, P., Martin-Brualla, R., Srinivasan, P.P.: Mip-NeRF: a multiscale representation for anti-aliasing neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2021)

    Google Scholar 

  2. Bi, S., et al.: Neural reflectance fields for appearance acquisition. arXiv preprint arXiv:2008.03824 (2020)

  3. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: Nerd: neural reflectance decomposition from image collections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12684–12694 (2021)

    Google Scholar 

  4. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3d-aware image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5799–5809 (2021)

    Google Scholar 

  5. Deng, B., Barron, J.T., Srinivasan, P.P.: JaxNeRF: an efficient JAX implementation of nerf (2020). https://github.com/google-research/google-research/tree/master/jaxnerf

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: Radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  8. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8649–8658 (2021)

    Google Scholar 

  9. Gao, C., Saraf, A., Kopf, J., Huang, J.B.: Dynamic view synthesis from dynamic monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5712–5721 (2021)

    Google Scholar 

  10. Garbin, S.J., Kowalski, M., Johnson, M., Shotton, J., Valentin, J.: FastNeRF: High-fidelity neural rendering at 200fps. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14346–14355 (2021)

    Google Scholar 

  11. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 315–323. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  12. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5875–5884 (2021)

    Google Scholar 

  13. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  14. Jacot, A., Gabriel, F., Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  15. Jeong, Y., Ahn, S., Choy, C., Anandkumar, A., Cho, M., Park, J.: Self-calibrating neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5846–5854 (2021)

    Google Scholar 

  16. Knapitsch, A., Park, J., Zhou, Q.Y., Koltun, V.: Tanks and temples: benchmarking large-scale scene reconstruction. ACM Trans. Graphics (ToG) 36(4), 1–13 (2017)

    Article  Google Scholar 

  17. Kosiorek, A.R., et al.: NeRF-VAE: a geometry aware 3D scene generative model. In: International Conference on Machine Learning, pp. 5742–5752. PMLR (2021)

    Google Scholar 

  18. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6498–6508 (2021)

    Google Scholar 

  19. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  20. Lindell, D.B., Martel, J.N., Wetzstein, G.: Autoint: automatic integration for fast neural volume rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14556–14565 (2021)

    Google Scholar 

  21. Liu, L., Gu, J., Zaw Lin, K., Chua, T.S., Theobalt, C.: Neural sparse voxel fields. Adv. Neural. Inf. Process. Syst. 33, 15651–15663 (2020)

    Google Scholar 

  22. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renerable volumes from images. ACM Trans. Graphics 38(4), 1–14 (2019). https://doi.org/10.1145/3306346.3323020

    Article  Google Scholar 

  23. Martin-Brualla, R., Radwan, N., Sajjadi, M.S., Barron, J.T., Dosovitskiy, A., Duckworth, D.: NeRF in the wild: neural radiance fields for unconstrained photo collections. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7210–7219 (2021)

    Google Scholar 

  24. Meng, Q., et al.: GNeRF: GAN-based neural radiance field without posed camera. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6351–6361 (2021)

    Google Scholar 

  25. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  26. Noguchi, A., Sun, X., Lin, S., Harada, T.: Neural articulated radiance field. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5762–5772 (2021)

    Google Scholar 

  27. Park, K., et al.: Deformable neural radiance fields (2020)

    Google Scholar 

  28. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10318–10327 (2021)

    Google Scholar 

  29. Rahaman, N., et al.: On the spectral bias of neural networks. In: International Conference on Machine Learning, pp. 5301–5310. PMLR (2019)

    Google Scholar 

  30. Ramachandran, P., Zoph, B., Le, Q.V.: Searching for activation functions. arXiv preprint arXiv:1710.05941 (2017)

  31. Rebain, D., Jiang, W., Yazdani, S., Li, K., Yi, K.M., Tagliasacchi, A.: DeRF: decomposed radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14153–14161 (2021)

    Google Scholar 

  32. Reiser, C., Peng, S., Liao, Y., Geiger, A.: KiloNeRF: speeding up neural radiance fields with thousands of tiny MLPs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14335–14345 (2021)

    Google Scholar 

  33. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3d-aware image synthesis. Adv. Neural. Inf. Process. Syst. 33, 20154–20166 (2020)

    Google Scholar 

  34. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. Adv. Neural. Inf. Process. Syst. 33, 7462–7473 (2020)

    Google Scholar 

  35. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3d-structure-aware neural scene representations. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  36. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504 (2021)

    Google Scholar 

  37. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)

    Google Scholar 

  38. Tancik, M., et al.: Learned initializations for optimizing coordinate-based neural representations. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2846–2855 (2021)

    Google Scholar 

  39. Tancik, M., et al.: Fourier features let networks learn high frequency functions in low dimensional domains. Adv. Neural. Inf. Process. Syst. 33, 7537–7547 (2020)

    Google Scholar 

  40. Tolstikhin, I.O., et al.: MLP-mixer: an all-MLP architecture for vision. Adv. Neural. Inf. Process. Syst. 34, 24261–24272 (2021)

    Google Scholar 

  41. Touvron, H., et al.: ResMLP: feedforward networks for image classification with data-efficient training. arXiv preprint arXiv:2105.03404 (2021)

  42. Tretschk, E., Tewari, A., Golyanik, V., Zollhöfer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12959–12970 (2021)

    Google Scholar 

  43. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  44. Wang, Z., Wu, S., Xie, W., Chen, M., Prisacariu, V.A.: NeRF-: neural radiance fields without known camera parameters. arXiv preprint arXiv:2102.07064 (2021)

  45. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-viewpoint video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9421–9431 (2021)

    Google Scholar 

  46. Yao, Y., et al.: BlendedMVS: a large-scale dataset for generalized multi-view stereo networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1790–1799 (2020)

    Google Scholar 

  47. Yen-Chen, L., Florence, P., Barron, J.T., Rodriguez, A., Isola, P., Lin, T.Y.: INeRF: inverting neural radiance fields for pose estimation. In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1323–1330. IEEE (2021)

    Google Scholar 

  48. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: PlenOctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  49. Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graphics (TOG) 40(6), 1–18 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the School of Cyber Science and Engineering, Zhengzhou University, the Zhengzhou City Collaborative Innovation Major Project, and the GPU support provided by the 3DCV lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangjie Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, S., Cao, Y., Duan, P., Chen, X. (2023). SRes-NeRF: Improved Neural Radiance Fields for Realism and Accuracy of Specular Reflections. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics