Abstract
This paper presents a real-world domain-specific dataset, which facilitates algorithm development and benchmarking on the challenging problem of multimodal classification of urban waste in street-level imagery. The dataset, which we have named “GIGO: Garbage in, Garbage out,” consists of 25k images collected from a large geographic area of Amsterdam. It is created with the aim of helping cities to collect different types of garbage from the streets in a more sustainable fashion. The collected data differs from existing benchmarking datasets, introducing unique scientific challenges. In this fine-grained classification dataset, the garbage categories are visually heterogeneous with different sizes, origins, materials, and visual appearance of the objects of interest. In addition, we provide various open data statistics about the geographic area in which the images were collected. Examples are information about demographics, different neighborhood statistics, and information about buildings in the vicinity. This allows for experimentation with multimodal approaches. Finally, we provide several state-of-the-art baselines utilizing the different modalities of the dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Albert, A., Kaur, J., Gonzalez, M.C.: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1357–1366 (2017)
An, J., et al.: IGAGCN: information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction. Neural Netw. 143, 355–367 (2021)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11621–11631 (2020)
Cai, G., Zhu, Y., Wu, Y., Jiang, X., Ye, J., Yang, D.: A multimodal transformer to fuse images and metadata for skin disease classification. The Visual Computer, pp. 1–13 (2022)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Moya, M.G., Phan, T.T., Gatica-Perez, D.: Zurich like new: analyzing open urban multimodal data. In: Proceedings of the 1st International Workshop on Multimedia Computing for Urban Data, pp. 1–8 (2021)
Gurrin, C., et al.: [invited papers] Comparing approaches to interactive lifelog search at the lifelog search challenge (LSC2018). ITE Trans. Media Technol. Appl. 7(2), 46–59 (2019)
Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 1025–1035 (2017)
Harman, D.: Overview of the first TREC conference. In: Proceedings of the 16th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 36–47. SIGIR 1993, Association for Computing Machinery, New York, NY, USA (1993). https://doi.org/10.1145/160688.160692. https://doi.org/10.1145/160688.160692
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hong, D., Gao, L., Yao, J., Zhang, B., Plaza, A., Chanussot, J.: Graph convolutional networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 59(7), 5966–5978 (2021)
Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3D object representations for fine-grained categorization. In: 4th International IEEE Workshop on 3D Representation and Recognition (3dRR-13). Sydney, Australia (2013)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems 25 (2012)
Larson, M., et al.: Automatic tagging and geotagging in video collections and communities. In: Proceedings of the 1st ACM International Conference on Multimedia Retrieval. ICMR 2011, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1991996.1992047. https://doi.org/10.1145/1991996.1992047
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)
Lokoč, J., et al.: Is the reign of interactive search eternal? findings from the video browser showdown 2020. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 17(3), 1–26 (2021)
Maji, S., Rahtu, E., Kannala, J., Blaschko, M., Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and TRECVid. In: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. MIR 2006, Association for Computing Machinery, New York, NY, USA (2006). https://doi.org/10.1145/1178677.1178722. https://doi.org/10.1145/1178677.1178722
Sukel, M., Rudinac, S., Worring, M.: Multimodal classification of urban micro-events. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1455–1463 (2019)
Sukel, M., Rudinac, S., Worring, M.: Urban object detection kit: a system for collection and analysis of street-level imagery. In: Proceedings of the 2020 International Conference on Multimedia Retrieval, pp. 509–516 (2020)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tan, M., Le, Q.: EfficientNetV2: smaller models and faster training. In: International Conference on Machine Learning, pp. 10096–10106. PMLR (2021)
Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1013–1020. IEEE (2018)
Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geograp. 46, 234–240 (1970). http://www.jstor.org/stable/143141
Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD Birds-200-2011 Dataset. Tech. Rep. CNS-TR-2011-001, California Institute of Technology (2011)
Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.i., Jegelka, S.: Representation learning on graphs with jumping knowledge networks. In: International Conference on Machine Learning, pp. 5453–5462. PMLR (2018)
Xu, P., Zhu, X., Clifton, D.A.: Multimodal learning with transformers: a survey. arXiv preprint arXiv:2206.06488 (2022)
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv preprint arXiv:1709.04875 (2017)
Zhang, H., Hao, Y., Ngo, C.W.: Token shift transformer for video classification. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 917–925 (2021)
Zhao, L., et al.: T-GCN: a temporal graph convolutional network for traffic prediction. IEEE Trans. Intell. Transp. Syst. 21(9), 3848–3858 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sukel, M., Rudinac, S., Worring, M. (2023). GIGO, Garbage In, Garbage Out: An Urban Garbage Classification Dataset. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_41
Download citation
DOI: https://doi.org/10.1007/978-3-031-27077-2_41
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27076-5
Online ISBN: 978-3-031-27077-2
eBook Packages: Computer ScienceComputer Science (R0)