Skip to main content

Binary Neural Network for Video Action Recognition

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13833))

Included in the following conference series:

  • 1373 Accesses

Abstract

In the typical video action classification scenario, it is critical to extract the temporal-spatial information in the videos with complex 3D convolution neural networks, which significantly expand both the computation cost and memory costs. In this paper, we propose a novel 1-bit 3D convolution block named 3D BitConv, capable of compressing the 3D convolutional networks while maintaining a high level of accuracy. Due to its high flexibility, the proposed 3D BitConv block can be directly embedded in the latest 3D convolutional backbone. Consequently, we binarize two representative 3D convolutional neural networks (C3D and ResNet3D) and validate the accuracy of action recognition tasks. The results of two widely used datasets demonstrate that the two proposed binary 3D networks achieve impressive performance at a lower cost. Furthermore, we carry out an extensive ablation analysis to test and verify the efficacy of the components in 3D BitConv.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR, pp. 6299–6308 (2017)

    Google Scholar 

  2. Chen, T., Zhang, Z., Ouyang, X., Liu, Z., Shen, Z., Wang, Z.: BNN-BN=?: training binary neural networks without batch normalization. In: CVPR. pp. 4619–4629 (2021)

    Google Scholar 

  3. Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., Bengio, Y.: Binarized neural networks: training deep neural networks with weights and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830 (2016)

  4. Darabi, S., Belbahri, M., Courbariaux, M., Nia, V.P.: BNN+: Improved binary network training (2018)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: ICCV, pp. 6202–6211 (2019)

    Google Scholar 

  7. Fernando, B., Gavves, E., Oramas, J.M., Ghodrati, A., Tuytelaars, T.: Modeling video evolution for action recognition. In: CVPR, pp. 5378–5387 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  10. Jokic, P., Emery, S., Benini, L.: Binaryeye: A 20 KFPS streaming camera system on FPGA with real-time on-device image recognition using binary neural networks. In: SIES, pp. 1–7 (2018)

    Google Scholar 

  11. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR, pp. 1725–1732 (2014)

    Google Scholar 

  12. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV, pp. 2556–2563 (2011)

    Google Scholar 

  13. Li, R., Wang, Y., Liang, F., Qin, H., Yan, J., Fan, R.: Fully quantized network for object detection. In: CVPR, pp. 2810–2819 (2019)

    Google Scholar 

  14. Li, Z., Ni, B., Zhang, W., Yang, X., Wen, G.: Performance guaranteed network acceleration via high-order residual quantization. In: ICCV, pp. 2603-2611 (2017)

    Google Scholar 

  15. Lin, X., Zhao, C., Pan, W.: Towards accurate binary convolutional neural network. NIPS (2017)

    Google Scholar 

  16. Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., Cheng, K.T.: Bi-real net: Enhancing the performance of 1-bit CNNs with improved representational capability and advanced training algorithm. In: ECCV, pp. 722–737 (2018)

    Google Scholar 

  17. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. NIPS (2019)

    Google Scholar 

  18. Peng, H., Chen, S.: BDNN: Binary convolution neural networks for fast object detection. PRL, pp. 91–97 (2019)

    Google Scholar 

  19. Phan, H., He, Y., Savvides, M., Shen, Z., et al.: MoBiNet: a mobile binary network for image classification. In: WACV, pp. 3453–3462 (2020)

    Google Scholar 

  20. Qin, H., Cai, Z., Zhang, M., Ding, Y., Zhao, H., Yi, S., Liu, X., Su, H.: Bipointnet: Binary neural network for point clouds. arXiv preprint arXiv:2010.05501 (2020)

  21. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: ImageNet classification using binary convolutional neural networks. In: ECCV (2016)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Adv. Neural Inf. Proc. Syst. (NeurIPS), pp. 568–576 (2014)

    Google Scholar 

  23. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: A dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  24. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: ICCV, pp. 4489–4497 (2015)

    Google Scholar 

  25. Wei, Y., Pan, X., Qin, H., Ouyang, W., Yan, J.: Quantization mimic: towards very tiny CNN for object detection. In: ECCV, pp. 267–283 (2018)

    Google Scholar 

  26. Xu, S., Li, Y., Zhao, J., Zhang, B., Guo, G.: POEM: 1-bit point-wise operations based on expectation-maximization for efficient point cloud processing. arXiv preprint arXiv:2111.13386 (2021)

  27. Zhang, X., Zhou, X., Lin, M., Sun, J.: Shufflenet: an extremely efficient convolutional neural network for mobile devices. In: CVPR, pp. 6848–6856 (2018)

    Google Scholar 

  28. Zhao, J., et al.: Data-adaptive binary neural networks for efficient object detection and recognition. PRL, pp. 239–245 (2022)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Natural Science Foundation of China (61976220 and 61832017), Beijing Outstanding Young Scientist Program (BJJWZYJH012019100020098), and the Research Seed Funds of School of Interdisciplinary Studies, Renmin University of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiwu Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, H., Lu, Z., Wen, JR. (2023). Binary Neural Network for Video Action Recognition. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13833. Springer, Cham. https://doi.org/10.1007/978-3-031-27077-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27077-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27076-5

  • Online ISBN: 978-3-031-27077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics