Skip to main content

Verification of Numeric Planning Problems Through Domain Dynamic Consistency

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

Verification of the development of complex problem models is an open problem in real-world applications of automated planning. To facilitate the verification task, this paper introduces the notion of Domain Dynamic Consistency for planning problems expressed in PDDL. This notion is aimed at signalling suspicious inputs arising at the intersection between the abstract description of the model and its concrete instantiation. Together with the notion we present an approximation based approach that is devoted to automatically solve the problem of deciding when a PDDL numeric planning problem is not Domain Dynamic Consistent. The paper terminates with an example of application of this notion and its related technique within a Urban Traffic Control scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A Boolean fluent can be mapped into a \( \{0,1\} \) numeric fluent.

References

  1. Aldinger, J., Mattmüller, R., Göbelbecker, M.: Complexity of interval relaxed numeric planning. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS (LNAI), vol. 9324, pp. 19–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24489-1_2

    Chapter  Google Scholar 

  2. Aldinger, J., Nebel, B.: Interval based relaxation heuristics for numeric planning with action costs. In: Kern-Isberner, G., Fürnkranz, J., Thimm, M. (eds.) KI 2017. LNCS (LNAI), vol. 10505, pp. 15–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67190-1_2

    Chapter  Google Scholar 

  3. Bensalem, S., Havelund, K., Orlandini, A.: Verification and validation meet planning and scheduling. Int. J. Softw. Tools Technol. Transf. 16(1), 1–12 (2014)

    Article  Google Scholar 

  4. Bhatnagar, S., Mund, S., Scala, E., McCabe, K., McCluskey, L., Vallati, M.: On the challenges of on-the-fly knowledge acquisition for automated planning applications. In: 14th International Conference on Agents and Artificial Intelligence (2022)

    Google Scholar 

  5. Bonet, B., Geffner, H.: Planning as heuristic search. Artif. Intell. 129(1–2), 5–33 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. De Giacomo, G., Vardi, M.: Synthesis for LTL and LDL on finite traces. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 1558–1564. AAAI Press (2015)

    Google Scholar 

  7. Edelkamp, S., Kissmann, P.: Partial symbolic pattern databases for optimal sequential planning. In: Dengel, A.R., Berns, K., Breuel, T.M., Bomarius, F., Roth-Berghofer, T.R. (eds.) KI 2008. LNCS (LNAI), vol. 5243, pp. 193–200. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85845-4_24

    Chapter  Google Scholar 

  8. Fourati, F., Bhiri, M.T., Robbana, R.: Verification and validation of PDDL descriptions using Event-B formal method. In: Proceedings of the 5th International Conference on Multimedia Computing and Systems (ICMCS), pp. 770–776 (2016)

    Google Scholar 

  9. Fox, M., Long, D.: PDDL2.1: an extension to PDDL for expressing temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003)

    Article  MATH  Google Scholar 

  10. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. CoRR abs/1110.2200 (2011)

    Google Scholar 

  11. Fox, M., Long, D., Tamboise, G., Isangulov, R.: Creating and executing a well construction/operation plan. uS Patent App. 15/541,381 (2018)

    Google Scholar 

  12. Ghallab, M., Nau, D.S., Traverso, P.: Automated Planning and Acting. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

  13. Helmert, M.: Decidability and undecidability results for planning with numerical state variables. In: Proceedings of the Sixth International Conference on Artificial Intelligence Planning Systems (AIPS), pp. 44–53. AAAI (2002)

    Google Scholar 

  14. Helmert, M.: Concise finite-domain representations for PDDL planning tasks. Artif. Intell. 173(5–6), 503–535 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoffmann, J.: The Metric-FF planning system: translating “ignoring delete lists’’ to numeric state variables. J. Artif. Intell. Res. 20, 291–341 (2003)

    Article  MATH  Google Scholar 

  16. Lipovetzky, N., Burt, C.N., Pearce, A.R., Stuckey, P.J.: Planning for mining operations with time and resource constraints. In: Proceedings of the International Conference on Automated Planning and Scheduling (2014)

    Google Scholar 

  17. McCluskey, T.L., Vallati, M., Franco, S.: Automated planning for urban traffic management. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 5238–5240 (2017)

    Google Scholar 

  18. McCluskey, T.L., Vaquero, T.S., Vallati, M.: Engineering knowledge for automated planning: towards a notion of quality. In: Proceedings of the Knowledge Capture Conference, K-CAP, pp. 14:1–14:8 (2017)

    Google Scholar 

  19. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM (2009)

    Google Scholar 

  20. Parkinson, S., Longstaff, A., Fletcher, S.: Automated planning to minimise uncertainty of machine tool calibration. Eng. Appl. Artif. Intell. 30, 63–72 (2014)

    Article  Google Scholar 

  21. Pnueli, A.: The temporal semantics of concurrent programs. In: Proceedings of Semantics of Concurrent Computation, pp. 1–20 (1979)

    Google Scholar 

  22. Raimondi, F., Pecheur, C., Brat, G.: PDVer, a tool to verify PDDL planning domains. In: Proceedings of Workshop on Verification and Validation of Planning and Scheduling Systems, ICAPS (2009)

    Google Scholar 

  23. Scala, E., Haslum, P., Thiébaux, S.: Heuristics for numeric planning via subgoaling. In: Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), pp. 3228–3234. IJCAI/AAAI Press (2016)

    Google Scholar 

  24. Scala, E., Haslum, P., Thiébaux, S., Ramírez, M.: Interval-based relaxation for general numeric planning. In: Proceedings of the 22nd European Conference on Artificial Intelligence (ECAI), pp. 655–663 (2016)

    Google Scholar 

  25. Scala, E., Haslum, P., Thiébaux, S., Ramírez, M.: Subgoaling techniques for satisficing and optimal numeric planning. J. Artif. Intell. Res. 68, 691–752 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  26. Scala, E., Vallati, M.: Exploiting classical planning grounding in hybrid PDDL+ planning engines. In: Proceedings of the 32nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 85–92 (2020)

    Google Scholar 

  27. Shrinah, A., Eder, K.: Goal-constrained planning domain model verification of safety properties. In: STAIRS@ECAI (2020)

    Google Scholar 

  28. Thiébaux, S., Coffrin, C., Hijazi, H., Slaney, J.: Planning with MIP for supply restoration in power distribution systems. In: Proceedings of the International Joint Conference on Artificial Intelligence (2013)

    Google Scholar 

  29. Vallati, M., Magazzeni, D., Schutter, B.D., Chrpa, L., McCluskey, T.L.: Efficient macroscopic urban traffic models for reducing congestion: a PDDL+ planning approach. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 3188–3194 (2016)

    Google Scholar 

Download references

Acknowledgements

Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1]. Enrico Scala has been partially supported by AIPlan4EU, a project funded by EU Horizon 2020 research and innovation programme under GA n. 101016442, and by the Italian MUR programme PRIN 2020, Prot.20203FFYLK (RIPER – Resilient AI-Based Self-Programming and Strategic Reasoning).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Vallati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Scala, E., McCluskey, T.L., Vallati, M. (2023). Verification of Numeric Planning Problems Through Domain Dynamic Consistency. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics