Skip to main content

Substitute Plastic Film with Kraft Paper in Automatic Pallet Wrapping: An AI Pipeline

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

This paper presents and discuss an overview of an AI pipeline to analyze the effects of substituting plastic film with Kraft paper in the tertiary packaging, i.e., in the external envelope of a pallet. Since there is no prior knowledge about paper wrapping yet, the goal is to understand the physics of the load unit—wrapped in paper—when subject to horizontal accelerations. This permits to study and analyze its rigidity and robustness to permanent deformations and/or excessive shifting during road or rail freight, to avoid damages and ripping of the envelope. The idea behind our AI pipeline is to virtually simulate such a situation, to precisely identify critical use cases, and eventually suggest a correction in the wrapping format. The first gain in using such an approach is to drastically reduce the number of physical tests needed to build a solid base knowledge about the behavior of Kraft paper enveloping the pallet during motion. The proposed pipeline consists of three phases: (i) data collection from real tests, (ii) modeling of the simulation, fitting relevant parameters between the actual test and the simulated one, and (iii) performing of virtual experiments on different settings, to suggest the best format. Computer vision and machine learning techniques are employed to accomplish these tasks, and preliminary results show encouraging performances of the proposed idea.

Project entitled “Machine learning to substitute LLDPE plastic film with Kraft paper in automatic pallet wrapping,” supported by ACMI S.p.A. and funded with D.M. 10.08.2021 n.1062 on FSE REACT-EU, by Ministero dell’Università e della Ricerca (MUR), under the Programma Operativo Nazionale (PON) “Ricerca e Innovazione” 2014–2020–Azione Green.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.acmispa.it/en/.

References

  1. Autocad: https://www.autodesk.it/solutions/simulation/overview

  2. Engineering & solutions for transport & logistic nv (estl nv, https://www.estl.be). Wafelstraat 46, 8540 Deerlijk, Belgium

  3. EUMOS, the European safe logistics association. quality standards. https://eumos.eu/quality-standards/. Accessed 5 Aug 2022

  4. Irrlicht: https://irrlicht.sourceforge.io/

  5. Opencv: https://opencv.org/

  6. Physx: https://github.com/NVIDIAGameWorks/PhysX

  7. Pychrono: https://www.projectchrono.org/pychrono/

  8. Simscape: https://www.mathworks.com/products/simscape-multibody.html

  9. European Commission: A European Strategy for Plastics in a Circular Economy 2018a (2018). https://ec.europa.eu/environment/circular-economy/pdf/plastics-strategy-annex.pdf. Accessed 5 Aug 2022

  10. European Green Deal (2019–2024). https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en. Accessed 5 Aug 2022

  11. European Commission. Proposal for a regulation of the European Parliament and of the council laying down harmonised rules on Artificial Intelligence (Artificial Intelligence act) and amending certain union legislative acts (2021). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206 &from=EN. Accessed 5 Aug 2022

  12. European Commission. A European approach to artificial intelligence (2022). https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence. Accessed 5 Aug 2022

  13. Anitescu, M., Tasora, A.: An iterative approach for cone complementarity problems for nonsmooth dynamics. Comput. Optim. Appl. 47(2), 207–235 (2010). https://doi.org/10.1007/s10589-008-9223-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Article  Google Scholar 

  15. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple instance learning. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 983–990. IEEE (2009)

    Google Scholar 

  16. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550. IEEE (2010)

    Google Scholar 

  17. Brunetti, A., Buongiorno, D., Trotta, G.F., Bevilacqua, V.: Computer vision and deep learning techniques for pedestrian detection and tracking: a survey. Neurocomputing 300, 17–33 (2018)

    Article  Google Scholar 

  18. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45103-X_50

    Chapter  Google Scholar 

  19. Foschi, E., Bonoli, A.: The commitment of packaging industry in the framework of the European strategy for plastics in a circular economy. Adm. Sci. 9(1), 18 (2019)

    Article  Google Scholar 

  20. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  21. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  22. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: Bmvc. vol. 1, p. 6. Citeseer (2006)

    Google Scholar 

  23. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2014)

    Article  Google Scholar 

  24. Iman, M., Arabnia, H.R., Branchinst, R.M.: Pathways to artificial general intelligence: a brief overview of developments and ethical issues via artificial intelligence, machine learning, deep learning, and data science. In: Arabnia, H.R., Ferens, K., de la Fuente, D., Kozerenko, E.B., Olivas Varela, J.A., Tinetti, F.G. (eds.) Advances in Artificial Intelligence and Applied Cognitive Computing. TCSCI, pp. 73–87. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70296-0_6

    Chapter  Google Scholar 

  25. Kalal, Z., Mikolajczyk, K., Matas, J.: Forward-backward error: automatic detection of tracking failures. In: 2010 20th International Conference on Pattern Recognition, pp. 2756–2759. IEEE (2010)

    Google Scholar 

  26. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2011)

    Article  Google Scholar 

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  29. Lukezic, A., Vojir, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6309–6318 (2017)

    Google Scholar 

  30. Marcus, G.: Deep learning: A critical appraisal. arXiv preprint arXiv:1801.00631 (2018)

  31. Matthews, C., Moran, F., Jaiswal, A.K.: A review on European union’s strategy for plastics in a circular economy and its impact on food safety. J. Clean. Prod. 283, 125263 (2021)

    Article  Google Scholar 

  32. Neubeck, A., Van Gool, L.: Efficient non-maximum suppression. In: 18th International Conference on Pattern Recognition (ICPR’06), vol. 3, pp. 850–855. IEEE (2006)

    Google Scholar 

  33. Nichol, A., Achiam, J., Schulman, J.: On first-order meta-learning algorithms. arXiv preprint arXiv:1803.02999 (2018)

  34. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  35. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  36. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  37. Shekhar, S.S.: Artificial intelligence in automation. Artif. Intell. 3085(06), 14–17 (2019)

    Google Scholar 

  38. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5693–5703 (2019)

    Google Scholar 

  39. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: International Conference on Machine Learning, pp. 1139–1147. PMLR (2013)

    Google Scholar 

  40. Tasora, A., et al.: Chrono: an open source multi-physics dynamics engine. In: Kozubek, T., Blaheta, R., Šístek, J., Rozložník, M., Čermák, M. (eds.) HPCSE 2015. LNCS, vol. 9611, pp. 19–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40361-8_2

    Chapter  Google Scholar 

  41. Tkaczyk, S., Drozd, M., Kędzierski, Ł, Santarek, K.: Study of the stability of palletized cargo by dynamic test method performed on laboratory test bench. Sensors 21(15), 5129 (2021)

    Article  Google Scholar 

  42. Wan, J., Li, X., Dai, H.N., Kusiak, A., Martínez-García, M., Li, D.: Artificial-intelligence-driven customized manufacturing factory: key technologies, applications, and challenges. Proc. IEEE 109(4), 377–398 (2021). https://doi.org/10.1109/JPROC.2020.3034808

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleonora Iotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Iotti, E., Dal Palù, A., Contesso, G., Bertinelli, F. (2023). Substitute Plastic Film with Kraft Paper in Automatic Pallet Wrapping: An AI Pipeline. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics