Skip to main content

Transformer Based Motion In-Betweening

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13796))

  • 463 Accesses

Abstract

In-betweening is the process of drawing transition frames between temporally-sparse keyframes to create a smooth animation sequence. This work presents a novel transformer-based in-betweening technique that serves as a tool for 3D animators. We first show that this problem can be represented as a sequence-to-sequence problem and introduce Tween Transformers - a model that synthesizes high-quality animations using temporally-sparse keyframes as input constraints.

We evaluate the model’s performance via two complementary methods - quantitative and qualitative evaluation. The model is compared quantitatively with the state-of-the-art models using LaFAN1, a high-quality animation dataset. Mean-squared metrics like L2P, L2Q, and NPSS are used for evaluation. Qualitatively, we provide two straightforward methods to assess the model’s output. First, we implement a custom ThreeJs-based motion visualizer to render the ground truth, input, and output sequences side by side for comparison. The visualizer renders custom sequences by specifying skeletal positions at temporally-sparse keyframes in JSON format. Second, we build a motion generator to generate custom motion sequences using the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Code can be found in https://github.com/Pavi114/motion-completion-using-transformers.

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). https://arxiv.org/abs/1409.0473

  2. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf

  3. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186. Association for Computational Linguistics, Minneapolis, Minnesota (2019). https://doi.org/10.18653/v1/N19-1423, https://aclanthology.org/N19-1423

  4. Duan, Y., et al.: Single-shot motion completion with transformer. arXiv preprint arXiv:2103.00776 (2021)

  5. Fragkiadaki, K., Levine, S., Malik, J.: Recurrent network models for kinematic tracking. CoRR abs/1508.00271 (2015). https://arxiv.org/abs/1508.00271

  6. Gopalakrishnan, A., Mali, A.A., Kifer, D., Giles, C.L., II, A.G.O.: A neural temporal model for human motion prediction. CoRR abs/1809.03036 (2018). https://arxiv.org/abs/1809.03036

  7. Harvey, F.G., Pal, C.: Recurrent transition networks for character locomotion. In: SIGGRAPH Asia 2018 Technical Briefs. SA 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3283254.3283277

  8. Harvey, F.G., Yurick, M., Nowrouzezahrai, D., Pal, C.: Robust motion in-betweening. ACM Trans. Graph. 39(4), 1–12 (2020). https://doi.org/10.1145/3386569.3392480

    Article  Google Scholar 

  9. Holden, D.: Robust solving of optical motion capture data by denoising. ACM Trans. Graph. 37(4), 1–12 (2018). https://doi.org/10.1145/3197517.3201302

    Article  Google Scholar 

  10. Holden, D., Saito, J., Komura, T.: A deep learning framework for character motion synthesis and editing. ACM Trans. Graph. 35(4), 1–11 (2016). https://doi.org/10.1145/2897824.2925975

    Article  Google Scholar 

  11. Lehrmann, A.M., Gehler, P.V., Nowozin, S.: Efficient nonlinear Markov models for human motion. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

    Google Scholar 

  12. Liu, Z., et al.: Towards natural and accurate future motion prediction of humans and animals. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9996–10004 (2019). https://doi.org/10.1109/CVPR.2019.01024

  13. Martínez-González, Á., Villamizar, M., Odobez, J.: Pose transformers (POTR): human motion prediction with non-autoregressive transformers. CoRR abs/2109.07531 (2021). https://arxiv.org/abs/2109.07531

  14. Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29(1), 1–12 (2009). https://doi.org/10.1145/1640443.1640452

    Article  Google Scholar 

  15. Müller, M., Röder, T., Clausen, M.: Efficient content-based retrieval of motion capture data. ACM Trans. Graph. 24(3), 677–685 (2005). https://doi.org/10.1145/1073204.1073247

    Article  Google Scholar 

  16. Oreshkin, B.N., Valkanas, A., Harvey, F.G., Ménard, L.S., Bocquelet, F., Coates, M.J.: Motion Inbetweening via Deep \(\Delta \)-Interpolator. arXiv e-prints arXiv:2201.06701 (2022)

  17. Dhariwal, P., Sastry, G., McCandlish, S.: Enct5: Fine-tuning t5 encoder for discriminative tasks (2021)

    Google Scholar 

  18. Ren, M., Kiros, R., Zemel, R.S.: Exploring models and data for image question answering. In: Proceedings of the 28th International Conference on Neural Information Processing Systems, vol. 2, pp. 2953–2961. NIPS 2015, MIT Press, Cambridge, MA, USA (2015)

    Google Scholar 

  19. Tanuwijaya, S., Ohno, Y.: TF-DF indexing for mocap data segments in measuring relevance based on textual search queries. Vis. Comput. 26(6–8), 1091–1100 (2010). https://doi.org/10.1007/s00371-010-0463-9

    Article  Google Scholar 

  20. Taylor, G.W., Hinton, G.E.: Factored conditional restricted Boltzmann machines for modeling motion style. In: Proceedings of the 26th Annual International Conference on Machine Learning ICML 2009, pp. 1025–1032. Association for Computing Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1553374.1553505

  21. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st International Conference on Neural Information Processing Systems NIPS 2017, pp. 6000–6010. Curran Associates Inc., Red Hook, NY, USA (2017)

    Google Scholar 

  22. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008). https://doi.org/10.1109/TPAMI.2007.1167

    Article  Google Scholar 

  23. Witkin, A., Kass, M.: Spacetime constraints. In: Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques SIGGRAPH 1988, pp. 159–168. Association for Computing Machinery, New York, NY, USA (1988). https://doi.org/10.1145/54852.378507

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavithra Sridhar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sridhar, P., Aananth, V., Aggarwal, M., Velusamy, R.L. (2023). Transformer Based Motion In-Betweening. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics