Skip to main content

Toward a Heterogeneous Multi-robot Framework for Priority-Based Sanitization of Railway Stations

  • Conference paper
  • First Online:
AIxIA 2022 – Advances in Artificial Intelligence (AIxIA 2022)

Abstract

We present a new framework for the prioritized multi-robot sanitization of railway stations based on Deep Reinforcement Learning. The proposed framework allows us to define teams of robots having different sanitizing strategies/capabilities, e.g., faster robots rapidly sanitizing small areas in cooperation with slower but long-range ones. Here, robot-specific policies are defined in order to accommodate the different capabilities of the single agents, while two global metrics are defined to assess the performance of the overall team. This capability of managing heterogeneous teams is an important requirement for the infrastructure manager Rete Ferroviaria Italiana S.p.A., which plans to verify to what extent different technologies or different strategies can be combined to reduce costs or increase cleaning efficiency. We tested our framework considering real data collected by the WiFi network of the main Italian railway station, Roma Termini, comparing its results with a similar Deep Reinforcement Learning system where homogeneous robots are employed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae, H., Kim, G., Kim, J., Qian, D., Lee, S.: Multi-robot path planning method using reinforcement learning. Appl. Sci. 9(15) (2019). https://doi.org/10.3390/app9153057, https://www.mdpi.com/2076-3417/9/15/3057

  2. Buonanno, G., Morawska, L., Stabile, L.: Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: prospective and retrospective applications. Environ. Int. 145, 106112 (2020). https://doi.org/10.1016/j.envint.2020.106112, https://www.sciencedirect.com/science/article/pii/S0160412020320675

  3. Caccavale, R., Calà, V., Ermini, M., Finzi, A., Lippiello, V., Tavano, F.: Multi-robot sanitization of railway stations based on deep Q-learning. In: AIRO 2021: 8th Italian Workshop on Artificial Intelligence and Robotics of the 20th International Conference of the Italian Association for Artificial Intelligence (AI*IA 2021) (2021)

    Google Scholar 

  4. Ciuffini, F., Tengattini, S., Bigazzi, A.Y.: Mitigating increased driving after the COVID-19 pandemic: an analysis on mode share, travel demand, and public transport capacity. Transp. Res. Rec. 03611981211037884 (2021). https://doi.org/10.1177/03611981211037884

  5. Duan, J., et al.: Deep-reinforcement-learning-based autonomous voltage control for power grid operations. IEEE Trans. Power Syst. 35(1), 814–817 (2020). https://doi.org/10.1109/TPWRS.2019.2941134

    Article  MathSciNet  Google Scholar 

  6. Gronauer, S., Diepold, K.: Multi-agent deep reinforcement learning: a survey. Artif. Intell. Rev. 1–49 (2021)

    Google Scholar 

  7. Hanna, S.: Transport and dispersion of tracers simulating COVID-19 aerosols in passenger aircraft. Indoor Air 32(1), e12974 (2022). https://doi.org/10.1111/ina.12974, https://onlinelibrary.wiley.com/doi/abs/10.1111/ina.12974

  8. Harmon, M., Lau, J.: The facility infection risk estimator\(^{{\rm TM}}\): a web application tool for comparing indoor risk mitigation strategies by estimating airborne transmission risk. Indoor Built Environ. 1420326X211039544 (2022). https://doi.org/10.1177/1420326X211039544

  9. Hossam, M., et al.: Effect of mutation and vaccination on spread, severity, and mortality of COVID-19 disease. J. Med. Virol. 94(1), 197–204 (2022)

    Article  Google Scholar 

  10. Howard, A., Parker, L.E., Sukhatme, G.S.: Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. Int. J. Robot. Res. 25(5–6), 431–447 (2006). https://doi.org/10.1177/0278364906065378

    Article  Google Scholar 

  11. Lakshmanan, A.K., et al.: Complete coverage path planning using reinforcement learning for tetromino based cleaning and maintenance robot. Autom. Constr. 112, 103078 (2020)

    Google Scholar 

  12. Lee, T.K., Baek, S.H., Choi, Y.H., Oh, S.Y.: Smooth coverage path planning and control of mobile robots based on high-resolution grid map representation. Robot. Auton. Syst. 59(10), 801–812 (2011). https://doi.org/10.1016/j.robot.2011.06.002, https://www.sciencedirect.com/science/article/pii/S0921889011000996

  13. Lee, T.K., Baek, S.H., Oh, S.Y., Choi, Y.H.: Complete coverage algorithm based on linked smooth spiral paths for mobile robots. In: 2010 11th International Conference on Control Automation Robotics Vision, pp. 609–614 (2010). https://doi.org/10.1109/ICARCV.2010.5707264

  14. Lee, T.K., Baek, S., Oh, S.Y.: Sector-based maximal online coverage of unknown environments for cleaning robots with limited sensing. Robot. Auton. Syst. 59(10), 698–710 (2011). https://doi.org/10.1016/j.robot.2011.05.005, https://www.sciencedirect.com/science/article/pii/S0921889011000893

  15. Li, D., Yin, Y., Zhang, S., Wu, L.: How does railway respond to COVID-19 spreading. Countermeasure Analysis and Evaluation around the World (2020)

    Google Scholar 

  16. Mallya, D., Kandala, S., Vachhani, L., Sinha, A.: Priority patrolling using multiple agents. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 8692–8698 (2021). https://doi.org/10.1109/ICRA48506.2021.9561785

  17. Miao, X., Lee, J., Kang, B.Y.: Scalable coverage path planning for cleaning robots using rectangular map decomposition on large environments. IEEE Access 6, 38200–38215 (2018). https://doi.org/10.1109/ACCESS.2018.2853146

    Article  Google Scholar 

  18. Mnih, V., et al.: Human-level control through deep reinforcement learning (2015). https://www.nature.com/articles/nature14236#article-info

  19. Murtaza, G., Kanhere, S., Jha, S.: Priority-based coverage path planning for aerial wireless sensor networks. In: 2013 IEEE Eighth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 219–224 (2013). https://doi.org/10.1109/ISSNIP.2013.6529792

  20. Narang, M., et al.: Fighting COVID: an autonomous indoor cleaning robot (AICR) supported by artificial intelligence and vision for dynamic air disinfection. In: 2021 14th IEEE International Conference on Industry Applications (INDUSCON), pp. 1146–1153 (2021). https://doi.org/10.1109/INDUSCON51756.2021.9529813

  21. Nasirian, B., Mehrandezh, M., Janabi-Sharifi, F.: Efficient coverage path planning for mobile disinfecting robots using graph-based representation of environment. Front. Robot. AI 8 (2021). https://doi.org/10.3389/frobt.2021.624333, https://www.frontiersin.org/article/10.3389/frobt.2021.624333

  22. Nasirian, B., Mehrandezh, M., Janabi-Sharifi, F.: Efficient coverage path planning for mobile disinfecting robots using graph-based representation of environment. Front. Robot. AI 8, 4 (2021)

    Article  Google Scholar 

  23. Oh, J.S., Choi, Y.H., Park, J.B., Zheng, Y.: Complete coverage navigation of cleaning robots using triangular-cell-based map. IEEE Trans. Industr. Electron. 51(3), 718–726 (2004). https://doi.org/10.1109/TIE.2004.825197

    Article  Google Scholar 

  24. Parker, L.E.: Lifelong adaptation in heterogeneous multi-robot teams: response to continual variation in individual robot performance (2000)

    Google Scholar 

  25. Pasqualetti, F., Durham, J.W., Bullo, F.: Cooperative patrolling via weighted tours: performance analysis and distributed algorithms. IEEE Trans. Rob. 28(5), 1181–1188 (2012). https://doi.org/10.1109/TRO.2012.2201293

    Article  Google Scholar 

  26. Poliński, J., Ochociński, K.: Impact of COVID-19 on the functioning of passenger rail transport. Probl. Kolejnictwa Z. 190, 103–124 (2021)

    Google Scholar 

  27. Setti, L., et al.: Airborne transmission route of COVID-19: why 2 meters/6 feet of inter-personal distance could not be enough (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215485/

  28. Stegagno, P., Cognetti, M., Rosa, L., Peliti, P., Oriolo, G.: Relative localization and identification in a heterogeneous multi-robot system. In: 2013 IEEE International Conference on Robotics and Automation, pp. 1857–1864 (2013). https://doi.org/10.1109/ICRA.2013.6630822

  29. Stump, E., Michael, N.: Multi-robot persistent surveillance planning as a vehicle routing problem. In: 2011 IEEE International Conference on Automation Science and Engineering, pp. 569–575 (2011). https://doi.org/10.1109/CASE.2011.6042503

  30. Tanner, H.G.: Switched UAV-UGV cooperation scheme for target detection. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 3457–3462 (2007). https://doi.org/10.1109/ROBOT.2007.364007

  31. Tardivo, A., Zanuy, A.C., Martín, C.S.: COVID-19 impact on transport: a paper from the railways’ systems research perspective. Transp. Res. Rec. 2675(5), 367–378 (2021). https://doi.org/10.1177/0361198121990674

    Article  Google Scholar 

  32. Tavakoli, M., Carriere, J., Torabi, A.: Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the COVID-19 pandemic: an analysis of the state of the art and future vision. Adv. Intell. Syst. 2(7), 2000071 (2020). https://doi.org/10.1002/aisy.202000071, https://onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202000071

  33. To, K.K., Hung, I.F., Chan, J.F., Yuen, K.Y.: From SARS coronavirus to novel animal and human coronaviruses. J. Thorac. Dis. 5(Suppl 2), S103 (2013)

    Google Scholar 

  34. Vidal, R., Shakernia, O., Kim, H., Shim, D., Sastry, S.: Probabilistic pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE Trans. Robot. Autom. 18(5), 662–669 (2002). https://doi.org/10.1109/TRA.2002.804040

    Article  Google Scholar 

  35. Waslander, S.L.: Unmanned aerial and ground vehicle teams: recent work and open problems. In: Nonami, K., Kartidjo, M., Yoon, K.J., Budiyono, A. (eds.) Autonomous Control Systems and Vehicles. Intelligent Systems, Control and Automation: Science and Engineering, vol. 65, pp. 21–36. Springer, Tokyo (2013). https://doi.org/10.1007/978-4-431-54276-6_2

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Tavano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Caccavale, R., Ermini, M., Fedeli, E., Finzi, A., Lippiello, V., Tavano, F. (2023). Toward a Heterogeneous Multi-robot Framework for Priority-Based Sanitization of Railway Stations. In: Dovier, A., Montanari, A., Orlandini, A. (eds) AIxIA 2022 – Advances in Artificial Intelligence. AIxIA 2022. Lecture Notes in Computer Science(), vol 13796. Springer, Cham. https://doi.org/10.1007/978-3-031-27181-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27181-6_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27180-9

  • Online ISBN: 978-3-031-27181-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics