Skip to main content

Eliminating Non-dominated Sorting from NSGA-III

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2023)

Abstract

The series of non-dominated sorting based genetic algorithms (NSGA-series) has clearly shown their niche in solving multi- and many-objective optimization problems since mid-nineties. Of them, NSGA-III was designed to solve problems having three or more objectives efficiently. It is well established that with an increase in number of objectives, an increasingly large proportion of a random population stays non-dominated, thereby making only a few population members to remain dominated. Thus, in many-objective optimization problems, the need for a non-dominated sorting (NDS) procedure is questionable, except in early generations. In support of this argument, it can also be noted that most other popular evolutionary multi- and many-objective optimization algorithms do not use the NDS procedure. In this paper, we investigate the effect of NDS procedure on the performance of NSGA-III. From simulation results on two to 10-objective problems, it is observed that an elimination of the NDS procedure from NSGA-III must accompany a penalty boundary intersection (PBI) type niching method to indirectly emphasize best non-dominated solutions. Elimination of the NDS procedure from NSGA-III will open up a number of avenues for NSGA-III to be modified for different scenarios, such as, for parallel implementations, surrogate-assisted applications, and others, more easily.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Binh, T.T., Korn, U.: MOBES: a multiobjective evolution strategy for constrained optimization problems. In: Proceedings of the Third International Conference on Genetic Algorithms (MENDEL 1997), pp. 176–182 (1997)

    Google Scholar 

  2. Blank, J., Deb, K.: Pymoo: multi-objective optimization in Python. IEEE Access 8, 89497–89509 (2020). https://doi.org/10.1109/access.2020.2990567

    Article  Google Scholar 

  3. Blank, J., Deb, K., Dhebar, Y., Bandaru, S., Seada, H.: Generating well-spaced points on a unit simplex for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 25(1), 48–60 (2021). https://doi.org/10.1109/tevc.2020.2992387

    Article  Google Scholar 

  4. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable multi-objective optimization test problems. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC 2002) (Cat. No.02TH8600), vol. 1, pp. 825–830. IEEE (2002). https://doi.org/10.1109/cec.2002.1007032

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, London (2001)

    MATH  Google Scholar 

  7. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/tevc.2013.2281535

    Article  Google Scholar 

  8. Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization. In: Proceedings of the Fifth International Conference on Genetic Algorithms, pp. 416–423. Morgan Kaufmann, San Mateo, CA (1993)

    Google Scholar 

  9. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, pp. 82–87. IEEE (1994). https://doi.org/10.1109/icec.1994.350037

  10. Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20

    Chapter  MATH  Google Scholar 

  11. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  12. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, Part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.1109/tevc.2013.2281534

    Article  Google Scholar 

  13. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975). https://doi.org/10.1145/321906.321910

    Article  MathSciNet  MATH  Google Scholar 

  14. Osyczka, A., Kundu, S.: A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Struct. Optim. 10(2), 94–99 (1995). https://doi.org/10.1007/BF01743536

    Article  Google Scholar 

  15. Srinivas, N., Deb, K.: Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2(3), 221–248 (1994). https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  16. Tanaka, M., Watanabe, H., Furukawa, Y., Tanino, T.: GA-based decision support system for multicriteria optimization. In: 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century, vol. 2, pp. 1556–1561. IEEE (1995)

    Google Scholar 

  17. Zhang, Q., Li, H.: MOEA/d: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007). https://doi.org/10.1109/tevc.2007.892759

    Article  Google Scholar 

  18. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000). https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge the financial support from Koenig Endowed Chair funding from the Department of Electrical and Computer Engineering at Michigan State University, East Lansing, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balija Santoshkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santoshkumar, B., Deb, K., Chen, L. (2023). Eliminating Non-dominated Sorting from NSGA-III. In: Emmerich, M., et al. Evolutionary Multi-Criterion Optimization. EMO 2023. Lecture Notes in Computer Science, vol 13970. Springer, Cham. https://doi.org/10.1007/978-3-031-27250-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27250-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27249-3

  • Online ISBN: 978-3-031-27250-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics