Abstract
The KiPA 2022 challenge aims to develop reliable and reproducible methods for segmenting four kidney-related structures on CTA images to improve surgery-based renal cancer treatment. In this work, we describe our approach for 3D segmentation of renal vein, kidney, renal artery, and tumor from the KiPA 2022 dataset. We used the MONAI framework and the SegResNet architecture with a combination of Dice Focal loss and L2 regularization. We applied various data augmentation techniques and trained the model using the AdamW optimizer with a Cosine annealing scheduler. Our method achieved \(10^{th}\) position in the open test leaderboard and \(6^{th}\) position in the closed test leaderboard.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kipa 2022. https://kipa22.grand-challenge.org/dataset/
Project-monai/monai. https://doi.org/10.5281/zenodo.5083813
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: redesigning skip connections to exploit multiscale features in image segmentation. IEEE Trans. Med. Imaging 39(6), 1856–1867 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Siddiquee, M.M.R., Yang, D., He, Y., Xu, D., Myronenko, A. (2023). Automated 3D Segmentation of Renal Structures for Renal Cancer Treatment. In: Xiao, Y., Yang, G., Song, S. (eds) Lesion Segmentation in Surgical and Diagnostic Applications. CuRIOUS KiPA MELA 2022 2022 2022. Lecture Notes in Computer Science, vol 13648. Springer, Cham. https://doi.org/10.1007/978-3-031-27324-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-27324-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27323-0
Online ISBN: 978-3-031-27324-7
eBook Packages: Computer ScienceComputer Science (R0)