Abstract
Head and neck tumor segmentation challenge (HECKTOR) 2022 offers a platform for researchers to compare their solutions to segmentation of tumors and lymph nodes from 3D CT and PET images. In this work, we describe our solution to HECKTOR 2022 segmentation task. We re-sample all images to a common resolution, crop around head and neck region, and train SegResNet semantic segmentation network from MONAI. We use 5-fold cross validation to select best model checkpoint. The final submission is an ensemble of 15 models from 3 runs. Our solution (team name NVAUTO) achieves the 1st place on the HECKTOR22 challenge leaderboard with an aggregated dice score of 0.78802 (https://hecktor.grand-challenge.org/evaluation/segmentation/leaderboard/.). It is implemented with Auto3DSeg (https://monai.io/apps/auto3dseg.).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Project-monai/monai. https://doi.org/10.5281/zenodo.5083813
Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2022: automatic head and neck tumor segmentation and outcome prediction in PET/CT (2023). https://arxiv.org/abs/2201.04138
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian: Identity mappings in deep residual networks. In: Leibe, Bastian, Matas, Jiri, Sebe, Nicu, Welling, Max (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630ā645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38
Myronenko, Andriy: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, Alessandro, Bakas, Spyridon, Kuijf, Hugo, Keyvan, Farahani, Reyes, Mauricio, van Walsum, Theo (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311ā320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Myronenko, A., Siddiquee, M.M.R., Yang, D., He, Y., Xu, D. (2023). Automated Head and Neck Tumor Segmentation from 3D PET/CT HECKTOR 2022 Challenge Report. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-27420-6_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27419-0
Online ISBN: 978-3-031-27420-6
eBook Packages: Computer ScienceComputer Science (R0)