Skip to main content

Stacking Feature Maps of Multi-scaled Medical Images in U-Net for 3D Head and Neck Tumor Segmentation

  • Conference paper
  • First Online:
Head and Neck Tumor Segmentation and Outcome Prediction (HECKTOR 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13626))

Included in the following conference series:

Abstract

Machine learning, especially deep learning, has achieved state-of-the-art performance on various computer vision tasks. For computer vision tasks in the medical domain, it remains as challenging tasks since medical data is heterogeneous, multi-level, and multi-scale. Head and Neck Tumor Segmentation Challenge (HECKTOR) provides a platform to apply machine learning techniques to the medical image domain. HECKTOR 2022 provides positron emission tomography/computed tomography (PET/CT) images which includes useful metabolic and anatomical information to sufficiently make an accurate tumor segmentation. In this paper, we proposed a stacked-multi-scaled medical image segmentation framework to automatically segment the Head and Neck tumor using PET/CT images. The main idea of our network was to generate various low-resolution feature maps of PET/CT images to make a better contour of Head and Neck tumors. We used multi-scaled PET/CT images as inputs, and stacked different intermediate feature maps by resolution for a better inference result. In addition, we evaluated our model on the HECKTOR challenge test dataset. Overall, we achieved a 0.69786, 0.66730 mean Dice score on GTVp and GTVn respectively. Our team’s name is HPCAS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrearczyk, V., et al.: Overview of the HECKTOR challenge at MICCAI 2021: automatic head and neck tumor segmentation and outcome prediction in PET/CT images. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds.) HECKTOR 2021. LNCS, vol. 13209, pp. 1–37. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-98253-9_1

    Chapter  Google Scholar 

  2. Beare, R., Lowekamp, B., Yaniv, Z.: Image segmentation, registration and characterization in R with SimpleITK. J. Stat. Softw. 86 (2018)

    Google Scholar 

  3. Cancer Research UK: Survival for laryngeal cancer (2020). https://www.cancerresearchuk.org/about-cancer/laryngeal-cancer/survival

  4. caner.net: Head and neck cancer: Statistics (2020). https://www.cancer.net/cancer-types/head-and-neck-cancer/statistics

  5. Farag, A.A.: Edge-based image segmentation. Remote Sens. Rev. 6(1), 95–121 (1992)

    Article  Google Scholar 

  6. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  7. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-Net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  8. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  9. Kamnitsas, K., et al.: DeepMedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) BrainLes 2016. LNCS, vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14

    Chapter  Google Scholar 

  10. Leung, T., Malik, J.: Contour continuity in region based image segmentation. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 544–559. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055689

    Chapter  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  12. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  13. Oreiller, V., et al.: Head and neck tumor segmentation in PET/CT: the HECKTOR challenge. Med. Image Anal. 77, 102336 (2022)

    Article  Google Scholar 

  14. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  15. Shi, Y., Micklisch, C., Mushtaq, E., Avestimehr, S., Yan, Y., Zhang, X.: An ensemble approach to automatic brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12963, pp. 138–148. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_13

    Chapter  Google Scholar 

  16. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16

    Chapter  Google Scholar 

  17. Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: TransBTS: multimodal brain tumor segmentation using transformer. arXiv preprint arXiv:2103.04430 (2021)

  18. Yanowitz, S.D., Bruckstein, A.M.: A new method for image segmentation. Comput. Vis. Graph. Image Process. 46(1), 82–95 (1989)

    Article  Google Scholar 

  19. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

We acknowledge support from National Science Foundation under the Grant 2015254, from the University of Texas at Anderson Cancer Center, Texas Advanced Computing Center, and Oden Institute for Computational and Engineering Sciences initiative in Oncological Data and Computational Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaying Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Zhang, X., Yan, Y. (2023). Stacking Feature Maps of Multi-scaled Medical Images in U-Net for 3D Head and Neck Tumor Segmentation. In: Andrearczyk, V., Oreiller, V., Hatt, M., Depeursinge, A. (eds) Head and Neck Tumor Segmentation and Outcome Prediction. HECKTOR 2022. Lecture Notes in Computer Science, vol 13626. Springer, Cham. https://doi.org/10.1007/978-3-031-27420-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27420-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27419-0

  • Online ISBN: 978-3-031-27420-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics