Skip to main content

Territorial Design and Vehicle Routing Problem Applied to the Population Census as a Case Study

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

The objective of this work is to solve a population census problem that requires the assignment of interviewers with the characteristic of balancing the workloads between them. The methodology was carried out in two phases: the first was to divide the territory through the Tabu Search (TS) metaheuristic to arrive at approximate solutions in a reasonable computation time to obtain groups of areas of basic geographic units (AGEBs) and in each group to carry out the corresponding census. The second phase was applied to the Vehicle Routing Problem (VRP) to obtain a set of optimal routes and assign them to the interviewers. The Territorial Design (TD) problem is NP-hard. Solving TD problems implicitly satisfies the grouping of geographic units and responds with a number k of groups with compactness and/or contiguity constraints. A population census is shown as a case study by using the aforementioned tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981). https://doi.org/10.1002/net.3230110211

    Article  Google Scholar 

  2. Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)

    Book  MATH  Google Scholar 

  3. Lingo Homepage. http://www.lingo.com/. last accessed 2022/06/24

  4. Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territorial design approach — applications, algorithms and GIS integration. TOP 13(1), 1–56 (2005). https://doi.org/10.1007/BF02578982

    Article  MathSciNet  MATH  Google Scholar 

  5. Zoltners, A.A., Sinha, P.: Sales territory alignment: a review and model. Manage. Sci. 29(11), 1237–1256 (1983). https://doi.org/10.1287/mnsc.29.11.1237

    Article  MATH  Google Scholar 

  6. Bação, F., Lobo, F., Painho, V.: Applying genetic algorithms to zone design. Soft Comput. Fusion Found. Methodol. Appl. 9(5), 341–348 (2005). https://doi.org/10.1007/s00500-004-0413-4

    Article  Google Scholar 

  7. Mehrotra, A., Johnson, E.L., Nemhauser, G.L.: An optimization based heuristic for political districting. Manage. Sci. 44(8), 1100–1114 (1998). https://doi.org/10.1287/mnsc.44.8.1100

    Article  MATH  Google Scholar 

  8. Openshaw, S., Rao, L.: Algorithms for reengineering 1991 census geography. Environ. Plann. A Econ. Space 27(3), 425–446 (1995). https://doi.org/10.1068/a270425

    Article  Google Scholar 

  9. Altman, M.: The computational complexity of automated redistricting: is automation the answer? Rutgers Comput. Technol. Law J. 23(1), 81–142 (1997)

    Google Scholar 

  10. Correa, E.S., Steiner, M.T.A., Freitas, A.A., Carnieri, C.: A genetic algorithm for the P-median problem. In: Spector, L.E., Goodman, E., et al. (eds) Proceeding 2001 Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 182–196. San Francisco, USA (2001)

    Google Scholar 

  11. Bernábe, B., Osorio, L., Espinosa, R., Ramirez, R., Aceves, R.: A comparative study of simulated annealing and variable neighborhood search for the geographic clustering problem. In: Computación y Sistemas (eds) The 2009 International Conference on Data Mining 2009 (DMIN 2009), pp. 595–599. Puebla, México (2009)

    Google Scholar 

  12. Osman, I.H., Christofides, N.: Capacitated clustering problems by hybrid simulated annealing and tabu search. Intern. Trans. Oper. Res. 1(3), 317–336 (1994)

    Article  MATH  Google Scholar 

  13. Martí, R.: Procedimientos metaheurísticos en optimización combinatoria. Tech. rep., Departamento de Estadística e Investigación Operativa, Facultad de Matematicas, Universidad de Valencia (2002)

    Google Scholar 

  14. Bernábe, B.: Integración de un Sistema de Información Geográfica para Algoritmos de Particionamiento. Unpublished (2013)

    Google Scholar 

  15. Moghdani, R., Salimifard, K., Demir, E., Benyettou, A.: The green vehicle routing problem: a systematic literature review. J. Clean. Prod. 279, 123691 (2021). https://doi.org/10.1016/j.jclepro.2020.123691

    Article  Google Scholar 

  16. Pelletier, S., Jabali, O., Laporte, G.: The electric vehicle routing problem with energy consumption uncertainty. Transp. Res. Part B Methodol. 126, 225–255 (2019). https://doi.org/10.1016/j.trb.2019.06.006

    Article  Google Scholar 

  17. Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P.: Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification. Oper. Res. 22(3), 2033–2062 (2022). https://doi.org/10.1007/s12351-020-00600-7

    Article  Google Scholar 

  18. Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 140, 106242 (2020). https://doi.org/10.1016/j.cie.2019.106242

    Article  Google Scholar 

  19. Pasha, J., Dulebenets, M.A., Kavoosi, M., Abioye, O.F., Wang, H., Guo, W.: An optimization model and solution algorithms for the vehicle routing problem with a factory-in-a-box. IEEE Access 8, 134743–134763 (2020). https://doi.org/10.1109/ACCESS.2020.3010176

    Article  Google Scholar 

  20. Desrochers, M., Laporte, G.: Improvements and extensions to the Miller–Tucker–Zemlin subtour elimination constraints. Oper. Res. Lett. 10, 27–36 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992). https://doi.org/10.1016/0377-2217(92)90138-Y

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erika Granillo-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Velázquez, R., Bernábe-Loranca, M.B., Granillo-Martínez, E., De Ita Luna, G. (2023). Territorial Design and Vehicle Routing Problem Applied to the Population Census as a Case Study. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-27440-4_39

Download citation

Publish with us

Policies and ethics