Abstract
The objective of this work is to solve a population census problem that requires the assignment of interviewers with the characteristic of balancing the workloads between them. The methodology was carried out in two phases: the first was to divide the territory through the Tabu Search (TS) metaheuristic to arrive at approximate solutions in a reasonable computation time to obtain groups of areas of basic geographic units (AGEBs) and in each group to carry out the corresponding census. The second phase was applied to the Vehicle Routing Problem (VRP) to obtain a set of optimal routes and assign them to the interviewers. The Territorial Design (TD) problem is NP-hard. Solving TD problems implicitly satisfies the grouping of geographic units and responds with a number k of groups with compactness and/or contiguity constraints. A population census is shown as a case study by using the aforementioned tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Lenstra, J.K., Rinnooy Kan, A.H.G.: Complexity of vehicle routing and scheduling problems. Networks 11(2), 221–227 (1981). https://doi.org/10.1002/net.3230110211
Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
Lingo Homepage. http://www.lingo.com/. last accessed 2022/06/24
Kalcsics, J., Nickel, S., Schröder, M.: Towards a unified territorial design approach — applications, algorithms and GIS integration. TOP 13(1), 1–56 (2005). https://doi.org/10.1007/BF02578982
Zoltners, A.A., Sinha, P.: Sales territory alignment: a review and model. Manage. Sci. 29(11), 1237–1256 (1983). https://doi.org/10.1287/mnsc.29.11.1237
Bação, F., Lobo, F., Painho, V.: Applying genetic algorithms to zone design. Soft Comput. Fusion Found. Methodol. Appl. 9(5), 341–348 (2005). https://doi.org/10.1007/s00500-004-0413-4
Mehrotra, A., Johnson, E.L., Nemhauser, G.L.: An optimization based heuristic for political districting. Manage. Sci. 44(8), 1100–1114 (1998). https://doi.org/10.1287/mnsc.44.8.1100
Openshaw, S., Rao, L.: Algorithms for reengineering 1991 census geography. Environ. Plann. A Econ. Space 27(3), 425–446 (1995). https://doi.org/10.1068/a270425
Altman, M.: The computational complexity of automated redistricting: is automation the answer? Rutgers Comput. Technol. Law J. 23(1), 81–142 (1997)
Correa, E.S., Steiner, M.T.A., Freitas, A.A., Carnieri, C.: A genetic algorithm for the P-median problem. In: Spector, L.E., Goodman, E., et al. (eds) Proceeding 2001 Genetic and Evolutionary Computation Conference (GECCO-2001), pp. 182–196. San Francisco, USA (2001)
Bernábe, B., Osorio, L., Espinosa, R., Ramirez, R., Aceves, R.: A comparative study of simulated annealing and variable neighborhood search for the geographic clustering problem. In: Computación y Sistemas (eds) The 2009 International Conference on Data Mining 2009 (DMIN 2009), pp. 595–599. Puebla, México (2009)
Osman, I.H., Christofides, N.: Capacitated clustering problems by hybrid simulated annealing and tabu search. Intern. Trans. Oper. Res. 1(3), 317–336 (1994)
Martí, R.: Procedimientos metaheurísticos en optimización combinatoria. Tech. rep., Departamento de Estadística e Investigación Operativa, Facultad de Matematicas, Universidad de Valencia (2002)
Bernábe, B.: Integración de un Sistema de Información Geográfica para Algoritmos de Particionamiento. Unpublished (2013)
Moghdani, R., Salimifard, K., Demir, E., Benyettou, A.: The green vehicle routing problem: a systematic literature review. J. Clean. Prod. 279, 123691 (2021). https://doi.org/10.1016/j.jclepro.2020.123691
Pelletier, S., Jabali, O., Laporte, G.: The electric vehicle routing problem with energy consumption uncertainty. Transp. Res. Part B Methodol. 126, 225–255 (2019). https://doi.org/10.1016/j.trb.2019.06.006
Konstantakopoulos, G.D., Gayialis, S.P., Kechagias, E.P.: Vehicle routing problem and related algorithms for logistics distribution: a literature review and classification. Oper. Res. 22(3), 2033–2062 (2022). https://doi.org/10.1007/s12351-020-00600-7
Elshaer, R., Awad, H.: A taxonomic review of metaheuristic algorithms for solving the vehicle routing problem and its variants. Comput. Ind. Eng. 140, 106242 (2020). https://doi.org/10.1016/j.cie.2019.106242
Pasha, J., Dulebenets, M.A., Kavoosi, M., Abioye, O.F., Wang, H., Guo, W.: An optimization model and solution algorithms for the vehicle routing problem with a factory-in-a-box. IEEE Access 8, 134743–134763 (2020). https://doi.org/10.1109/ACCESS.2020.3010176
Desrochers, M., Laporte, G.: Improvements and extensions to the Miller–Tucker–Zemlin subtour elimination constraints. Oper. Res. Lett. 10, 27–36 (1991)
Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992). https://doi.org/10.1016/0377-2217(92)90138-Y
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
González-Velázquez, R., Bernábe-Loranca, M.B., Granillo-Martínez, E., De Ita Luna, G. (2023). Territorial Design and Vehicle Routing Problem Applied to the Population Census as a Case Study. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-27440-4_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-27440-4_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27439-8
Online ISBN: 978-3-031-27440-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)