Skip to main content

A Combinatorial Approach: Datamining and an Efficient Deep Neural Network for Heart Disease Prediction

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2022)

Abstract

This paper explores the role of Data mining and Artificial Intelligence in the area of medical research. Prevention of heart disease is one of the vital areas in medical research. The objective of this study is to design a diagnostic prediction system that can detect and predict heart disease at an early stage by mining relevant data from the clinical dataset using datamining, statistics, and deep learning techniques. Data preprocessing is performed in multiphase such as removing of missing data, numeric transformation, and data normalization for mining an efficient data. Our main contribution is to design an efficient deep neural network model for the early prevention of heart disease. In this point of view, we have designed heart disease prediction system consists of two deep learning neural network architectures namely, (i) Deep neural network in Recognition of heart disease (DeepR) and (ii) efficient Deep neural network in Recognition of heart disease (eDeepR). In these two proposed architectures, DeepR generates 97.64% accuracy and eDeepR generates 99.53% accuracy for recognition of heart disease, after recognition which can be applicable for prevention. To evaluate the performance of proposed networks, conducted experiments on the Cleveland heart disease data set from the UCI repository. Results of proposed systems demonstrate the performance is superior to the previously reported prediction techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Singh, A., Kumar, R.: Heart disease prediction using machine learning algorithms. In: International Conference on Electrical and Electronics Engineering (ICE3-2020), IEEE, 78-1-7281-5846-4/20 (2020)

    Google Scholar 

  2. Ayon, S.I, Islam, M.M. Hossain, M.R.: Coronary artery heart disease prediction: a comparative study of computational intelligence techniques. IETE J. Res. (2020). https://doi.org/10.1080/03772063.2020.1713916

  3. Braunwald, E., Bonow, R.O.: Braunwald’s heart disease: a textbook of cardiovascular medicine, Ed. 9 (2012)

    Google Scholar 

  4. Libby, Zipes, D.: Braunwald’s Heart Disease: A Textbook of Cardiovascular Medicine, 2-Volume Set, 11th edn. (2018). ISBN: 9780323555937

    Google Scholar 

  5. Bleijendaal, H, et al.: Clinical applicability of artificial intelligence for patients with an inherited heart disease: a scoping review, Elsevier, Trends in Cardiovascular Medicine (2022)

    Google Scholar 

  6. Cho, Y.-R., Hu, X.: Network-based approaches in bioinformatics and biomedicine. Elsevier, Methods 198, 1–2 (2022)

    Google Scholar 

  7. Blassel, L., Zhukova, A., Villabona-Arenas, C.J., Atkins, K.E., Hue, S., Gascuel, O.: Drug resistance mutations in HIV: new bioinformatics approaches and challenges. Curr. Opin. Virol. 51, 56–64 (2021)

    Article  Google Scholar 

  8. Cao, C., et al.: Deep learning and its applications in biomedicine. Genomics Proteomics Bioinform. 16, 17–32 (2018)

    Article  Google Scholar 

  9. AlSaad, R., Malluhi, Q., Janahi, I., Boughorbel, S.: Predicting emergency department utilization among children with asthma using deep learning models. Healthcare Analyt. 2, 100050 (2022)

    Article  Google Scholar 

  10. Bolhasani, H., Mohseni, M., Rahmani, A.M.: Deep learning applications for IoT in health care: a systematic review. Inform. Med. Unlocked 23, 100550 (2021)

    Article  Google Scholar 

  11. Schmidt, B., Hildebrandt, A.: Deep learning in next-generation sequencing, Drug Discovery Today 26 (2021)

    Google Scholar 

  12. Bharti, R., Khamparia, A., Shabaz, M., Dhiman, G., Pande, S., Singh, P.: Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning, Hindawi Computational Intelligence and Neuroscience Volume 2021, Article ID 8387680 (2021)

    Google Scholar 

  13. UCI Repository of Machine Learning Databases. http://archive.ics.uci.edu/ml/datasets

  14. Aggrawal, R., Pal, S.: Multi-machine learning binary classification, feature selection and comparison technique for predicting death events related to heart disease. Int. J. Pharmaceutical Res. Schol. ISSN 0975-2366 (2020)

    Google Scholar 

  15. Salhi D.E, Tari, A., Kechadi, M.T.: Using machine learning for heart disease prediction. In: Advances in Computing Systems and Applications, pp. 70–78 (2021)

    Google Scholar 

  16. Rindhe, B.U., Ahire, N., Patil, R., Gagare, S., Darade, M.: Heart disease prediction using machine learning. Int. J. Adv. Res. Sci. Commun. Technol. 5(1) (2021)

    Google Scholar 

  17. Rajdhan, A., Sai, M., Agarwal, A., Ravi, D., Ghuli, P.: Heart disease prediction using machine learning. Int. J. Eng. Res. Technol. 9(04) (2020). ISSN: 2278-0181 IJERTV9IS040614

    Google Scholar 

  18. Srivastava, K., Choubey, D.K.: Heart disease prediction using machine learning and data mining. Int. J. Recent Technol. Eng. 9(1) (2020). ISSN: 2277-3878

    Google Scholar 

  19. Patel, J., Upadhyay, T., Paterl, S.: Heart disease prediction using machine learning and data mining technique. IJCSC 7, 129–137 (2016)

    Google Scholar 

  20. Palaniappan, S., Awang, R.: Intelligent heart disease prediction system using data mining techniques. Int. J. Comput. Sci. Network Secur. 8(8), 343–350 (2008)

    Google Scholar 

  21. Ali, L., Rahman, A., Khan, A., Zhou, M., Javeed, A., Khan Khan, J.A.: An automated diagnostic system for heart disease prediction based on \(\chi ^2\) statistical model and optimally configured deep neural network. IEEE Access 7 (2019). https://doi.org/10.1109/ACCESS.2019.2904800

  22. Liu, X., et al.: A hybrid classification system for heart disease diagnosis based on the RFRS method, Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2017, Article ID 8272091 (2017)

    Google Scholar 

  23. Mohan, S., Thirumalai, C., Srivatsava, G.: Effective Heart Disease Prediction Using Hybrid Machine Learning Techniques, IEEE Access, special section on smart caching, communications, computing and cybersecurity for information-centric internet of things (2019). https://doi.org/10.1109/ACCESS.2019.2923707

  24. Paul, A.K., Shill, P.C., Rabin, M.R.I., Murase, K.: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease. Appl. Intell. 48(7), 1739–1756 (2017)

    Article  Google Scholar 

  25. Polat, K., Sahan, S., Gunes, S.: Automatic detection of heart disease using an artificial immune recognition system (AIRS) with fuzzy resource allocation mechanism and k-nn based weighting preprocessing. Elsevier, Expert Systems with Applications 32, 625–631 (2007)

    Article  Google Scholar 

  26. Manogaran, G., Varatharajan, R., Priyan, M.K.: Hybrid recommendation system for heart disease diagnosis based on multiple kernel learning with adaptive neuro-fuzzy inference system. Multimedia Tools Appl. 77, 4379–4399 (2017)

    Article  Google Scholar 

  27. Tomov, N.-S., Tomov, S.: On deep neural networks for detecting heart disease (2018). https://arxiv.org/abs/1808.07168

  28. Das, R., Turkoglu, I., Sengur, A.: Effective diagnosis of heart disease through neural networks ensembles. Expert Syst. Appl. 36, 7675–7680 (2009)

    Article  Google Scholar 

  29. Lopes, R.R., et al.: Improving electrocardiogram-based detection of rare genetic heart disease using transfer learning: An application to phospholamban p.Arg14del mutation carriers, Elsevier, Computers in Biology and Medicine, vol 131 (2021)

    Google Scholar 

  30. Samuel, O.W., Asogbon, G.M., Sangaiah, A.K.: An Integrated Decision Support System Based on ANN and Fuzzy-AHP for Heart Failure Risk Prediction. Expert Syst. Appl. 68, 163–172 (2016)

    Article  Google Scholar 

  31. Benchmark datasets used for classification: comparison of results (umk.pl) (2007)

    Google Scholar 

  32. Ramprakash, P., Sarumathi, R., Mowriya, R., Nithyavishnupriya, S.: Heart disease prediction using deep neural network. In: Proceedings of the Fifth International Conference on Inventive Computation Technologies, IEEE Xplore (2020). Part Number: CFP20F70-ART; ISBN:978-1-7281-4685-0 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Jyothi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jyothi, V.K., Sarma, G.R.K. (2023). A Combinatorial Approach: Datamining and an Efficient Deep Neural Network for Heart Disease Prediction. In: Abraham, A., Pllana, S., Casalino, G., Ma, K., Bajaj, A. (eds) Intelligent Systems Design and Applications. ISDA 2022. Lecture Notes in Networks and Systems, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-27440-4_51

Download citation

Publish with us

Policies and ethics