Skip to main content

Athlete Monitoring in Professional Road Cycling Using Similarity Search on Time Series Data

  • Conference paper
  • First Online:
Machine Learning and Data Mining for Sports Analytics (MLSA 2022)

Abstract

In sports, athlete monitoring is important for preventing injuries and optimizing performance. The multitude of relevant factors during the exercise sessions, such as weather conditions, makes proper individual athlete monitoring labour intensive. In this work, we develop an automated approach for athlete monitoring in professional road cycling that takes into account the terrain on which the ride is executed by finding segments with similar elevation profiles. In our approach, the matching is focused on the shapes of the segments. We use 2.5 years of data of a single rider of Team Jumbo-Visma and assess the performance of our approach by determining the quality of the best matches for a selection of 700 distinct segments, consisting of the most representative shapes for the elevation profiles. We demonstrate that the execution time is within seconds and more than ten times faster than exhaustive search. Therefore, our method enables real-time deployment in large scale applications with potentially many requests from multiple users. Moreover, we show that on average our approach has similar accuracy when considering the correlation to a target segment and approximately only has a twice as large mean squared error when compared to exhaustive search. Finally, we discuss a practical example to demonstrate how our approach can be used for athlete performance monitoring.

This work is part of the Nationale SportInnovatorprijs 2020 WielerFitheid, which is financed by ZonMW.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.find_peaks.html.

References

  1. Aghabozorgi, S., Shirkhorshidi, A.S., Wah, T.Y.: Time-series clustering-a decade review. Inf. Syst. 53, 16–38 (2015)

    Article  Google Scholar 

  2. Agrawal, R., Faloutsos, C., Swami, A.: Efficient similarity search in sequence databases. In: Lomet, D.B. (ed.) FODO 1993. LNCS, vol. 730, pp. 69–84. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-57301-1_5

    Chapter  Google Scholar 

  3. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In: Proceedings of the 21th International Conference on Very Large Data Bases. VLDB 1995, San Francisco, CA, USA, pp. 490–501. Morgan Kaufmann Publishers Inc. (1995)

    Google Scholar 

  4. Ali, M., Jones, M.W., Xie, X., Williams, M.: Timecluster: dimension reduction applied to temporal data for visual analytics. Vis. Comput. 35(6), 1013–1026 (2019)

    Article  Google Scholar 

  5. Becht, E., et al.: Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37(1), 38–44 (2019)

    Article  Google Scholar 

  6. pong Chan, K., Fu, A.W.C.: Efficient time series matching by wavelets. In: Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337), pp. 126–133 (1999)

    Google Scholar 

  7. Coutts, A., Cormack, S.: Monitoring the training response. High-performance training for sports, pp. 71–84 (2014)

    Google Scholar 

  8. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proc. VLDB Endowment 1(2), 1542–1552 (2008)

    Article  Google Scholar 

  9. Esling, P., Agon, C.: Time-series data mining. ACM Comput. Surv. 45(1) (2012). https://doi.org/10.1145/2379776.2379788

  10. Fakhrazari, A., Vakilzadian, H.: A survey on time series data mining. In: 2017 IEEE International Conference on Electro Information Technology, EIT 2017, pp. 476–481. IEEE International Conference on Electro Information Technology, IEEE Computer Society (Sep 2017). DOI: https://doi.org/10.1109/EIT.2017.8053409,2017 IEEE International Conference on Electro Information Technology, EIT 2017; Conference date: 14-05-2017 Through 17-05-2017

  11. Halson, S.L.: Monitoring training load to understand fatigue in athletes. Sports Med. 44(2), 139–147 (2014)

    Article  Google Scholar 

  12. Hilmkil, A., Ivarsson, O., Johansson, M., Kuylenstierna, D., van Erp, T.: Towards machine learning on data from professional cyclists. arXiv preprint arXiv:1808.00198 (2018)

  13. Kellmann, M.: Preventing overtraining in athletes in high-intensity sports and stress/recovery monitoring. Scandinavian J. Med. Sci. Sports 20, 95–102 (2010)

    Article  Google Scholar 

  14. Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: a survey and empirical demonstration. Data Mining Knowl. Discov. 7(4), 349–371 (2003). https://doi.org/10.1023/A:1024988512476

    Article  MathSciNet  Google Scholar 

  15. Kirschen, G.W., Singer, D.D., Thode, H.C., Jr., Singer, A.J.: Relationship between body temperature and heart rate in adults and children: a local and national study. Am. J. Emerg. Med. 38(5), 929–933 (2020)

    Article  Google Scholar 

  16. Kontaki, M., Papadopoulos, A., Manolopoulos, Y.: Similarity search in time series databases (2006). https://doi.org/10.4018/9781591405603.ch106

  17. de Leeuw, A.-W., Heijboer, M., Hofmijster, M., van der Zwaard, S., Knobbe, A.: Time series regression in professional road cycling. In: Appice, A., Tsoumakas, G., Manolopoulos, Y., Matwin, S. (eds.) DS 2020. LNCS (LNAI), vol. 12323, pp. 689–703. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61527-7_45

    Chapter  Google Scholar 

  18. de Leeuw, A.W., van der Zwaard, S., van Baar, R., Knobbe, A.: Personalized machine learning approach to injury monitoring in elite volleyball players. Eur. J. Sport Sci. 22, 511–520 (2021)

    Article  Google Scholar 

  19. Liao, T.W.: Clustering of time series data-a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  MATH  Google Scholar 

  20. Van der Maaten, L., Hinton, G.: Visualizing data using T-SNE. J. Mach. Learn. Res. 9(11) (2008)

    Google Scholar 

  21. McGuigan, H., Hassmén, P., Rosic, N., Stevens, C.: Monitoring of training in high-performance athletes: what do practitioners do? J. Sci. Sport Exerc. 5, 121–129 (2021). https://doi.org/10.36905/jses.2021.02.05

    Article  Google Scholar 

  22. Meert, W., Hendrickx, K., Craenendonck, T.V.: wannesm/dtaidistance v2. 0.0. Zenodo (2020)

    Google Scholar 

  23. Mujika, I., Padilla, S.: Detraining: loss of training-induced physiological and performance adaptations. Part I: short term insufficient training stimulus. Sports Med. 30(2), 79–87 (2000). https://doi.org/10.2165/00007256-200030020-00002

    Article  Google Scholar 

  24. Mujika, I., Padilla, S.: Detraining: loss of training-induced physiological and performance adaptations. Part II: Long term insufficient training stimulus. Sports Med. 30(3), 145–54 (2000). https://doi.org/10.2165/00007256-200030030-00001

    Article  Google Scholar 

  25. Müller, M.: Dynamic Time Warping. In: Information Retrieval for Music and Motion, pp. 69–84. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74048-3_4

  26. Municio, E., et al.: Continuous athlete monitoring in challenging cycling environments using IoT technologies. IEEE Internet Things J. 6(6), 10875–10887 (2019)

    Article  Google Scholar 

  27. Nielsen, F.: Hierarchical Clustering, pp. 195–211 (02 2016)

    Google Scholar 

  28. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  29. Saw, A.E., Main, L.C., Gastin, P.B.: Monitoring the athlete training response: subjective self-reported measures trump commonly used objective measures: a systematic review. Br. J. Sports Med. 50(5), 281–291 (2016). https://doi.org/10.1136/bjsports-2015-094758

    Article  Google Scholar 

  30. Silacci, A., Taiar, R., Caon, M.: Towards an AI-based tailored training planning for road cyclists: A case study. Appl. Sci. 11(1) (2021). https://doi.org/10.3390/app11010313

  31. Soon, L.K., Lee, S.H.: An empirical study of similarity search in stock data. In: Proceedings of the 2nd International Workshop on Integrating Artificial Intelligence and Data Mining - Volume 84, pp. 31–38. AIDM 2007, Australian Computer Society Inc, AUS (2007)

    Google Scholar 

  32. Thorpe, R., Atkinson, G., Drust, B., Gregson, W.: Monitoring fatigue status in elite team-sport athletes: implications for practice. Int. J. Sports Physiol. Perform. 12(Suppl 2), S227–S234 (2017). https://doi.org/10.1123/ijspp.2016-0434

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie-Willem de Leeuw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Leeuw, AW., Oberkofler, T., Heijboer, M., Knobbe, A. (2023). Athlete Monitoring in Professional Road Cycling Using Similarity Search on Time Series Data. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds) Machine Learning and Data Mining for Sports Analytics. MLSA 2022. Communications in Computer and Information Science, vol 1783. Springer, Cham. https://doi.org/10.1007/978-3-031-27527-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27527-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27526-5

  • Online ISBN: 978-3-031-27527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics