Abstract
Extended Reality as a consolidated game platform was always a dream for both final consumers and game producers. If for one side this technology had enchanted and called the attention due its possibilities, for other side many challenges and difficulties had delayed its proliferation and massification. This paper intends to rise and discuss aspects and considerations related to these challenges and solutions. We try to bring some of the most relevant research topics and try to guess how XR games should look in the near future. We divide the challenges into 7 topics, based on extensive literature reviews: Cybersickness, User Experience, Displays, Rendering, Movements, Body Tracking and External World Information. We believe that this topics are a Grand Challenge, since the next generation of entertainment depends on adequately solving them in the near future.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Oculus Founder Palmer Luckey on What It Will Take to Make Virtual Reality Really Big (2020). https://www.technologyreview.com/2016/03/17/161530/. Accessed 10 Dec 2020
Sparrow, A.L., Gibbs, M., Arnold, M.: The ethics of multiplayer game design and community management: industry perspectives and challenges. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445363
Abramov, I., Gordon, J., Feldman, O., Chavarga, A.: Sex and vision ii: color appearance of monochromatic lights. Biol. Sex Differ. 3(1), 21 (2012). https://doi.org/10.1186/2042-6410-3-21
Albert, J.: User-Centric Classification of Virtual Reality Locomotion Methods. Master’s thesis, University of Washington (2018)
Albert, R., Patney, A., Luebke, D., Kim, J.: Latency requirements for foveated rendering in virtual reality. ACM Trans. Appl. Percept. (TAP) 14(4), 1–13 (2017)
Ams, L.L., Bernard, J., Vance, J., Lutz, R., Prabhu, G.: A new taxonomy for locomotion in virtual environments. Ph.D. thesis, Iowa State University (2002)
Arns, L.L., Cerney, M.M.: The relationship between age and incidence of cybersickness among immersive environment users. In: IEEE Proceedings. VR 2005. Virtual Reality, 2005, pp. 267–268. IEEE (2005)
Barré-Brisebois, C., et al.: Hybrid rendering for real-time ray tracing. In: Ray Tracing Gems, pp. 437–473. Apress, Berkeley, CA (2019). https://doi.org/10.1007/978-1-4842-4427-2_25
Berger, H.: Über das elektrenkephalogramm des menschen. Eur. Arch. Psychiatry Clin. Neurosci. 87(1), 527–570 (1929)
Biocca, F.: Will simulation sickness slow down the diffusion of virtual environment technology? Presence: Teleoperators Virtual Environ. 1(3), 334–343 (1992)
Birnstiel, S., Oberdörfer, S., Latoschik, M.E.: Stay safe! safety precautions for walking on a conventional treadmill in VR. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 732–733 (2022). https://doi.org/10.1109/VRW55335.2022.00217
Boletsis, C.: The new era of virtual reality locomotion: a systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017). https://doi.org/10.3390/mti1040024
Bonato, F., Bubka, A., Palmisano, S.: Combined pitch and roll and cybersickness in a virtual environment. Aviat. Space Environ. Med. 80(11), 941–945 (2009)
Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.: Nerd: neural reflectance decomposition from image collections. In: IEEE International Conference on Computer Vision (ICCV) (2021)
Bowman, D.A., Koller, D., Hodges, L.F.: A methodology for the evaluation of travel techniques for immersive virtual environments (1998)
Bromley, T.: How To Be A Games User Researcher: Run better playtests, reveal usability and UX issues, and make videogames better. Independently Published (2021)
Brooks, J.O., et al.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)
Bruck, S., Watters, P.A., et al.: Cybersickness and anxiety during simulated motion: Implications for VRET. Annu. Rev. Cybertherapy Telemedicine 144, 169–173 (2009)
Calandra, D., Billi, M., Lamberti, F., Sanna, A., Borchiellini, R.: Arm swinging vs treadmill: a comparison between two techniques for locomotion in virtual reality, pp. 53–56. The Eurographics Association (2018). https://doi.org/10.2312/egs.20181043
Cannavò, A., Calandra, D., Pratticò, F.G., Gatteschi, V., Lamberti, F.: An evaluation testbed for locomotion in virtual reality. IEEE Trans. Vis. Comput. Graph. 27(3), 1871–1889 (2021). https://doi.org/10.1109/TVCG.2020.3032440
Cao, Z., Jerald, J., Kopper, R.: Visually-induced motion sickness reduction via static and dynamic rest frames. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 105–112. IEEE (2018)
Carnegie, K., Rhee, T.: Reducing visual discomfort with HMDs using dynamic depth of field. IEEE Comput. Graph. Appl. 35(5), 34–41 (2015)
Caserman, P., Garcia-Agundez, A., Göbel, S.: A survey of full-body motion reconstruction in immersive virtual reality applications. IEEE Trans. Vis. Comput. Graph. 26(10), 3089–3108 (2019)
Chelen, W., Kabrisky, M., Rogers, S.: Spectral analysis of the electroencephalographic response to motion sickness. Aviat. Space Environ. Med. 64(1), 24–29 (1993)
Cherni, H., Métayer, N., Souliman, N.: Literature review of locomotion techniques in virtual reality. Int. J. Virtual Reality 20, 1–20 (2020). https://doi.org/10.20870/ijvr.2020.20.1.3183
Cheung, B., Hofer, K., Heskin, R., Smith, A.: Physiological and behavioral responses to an exposure of pitch illusion in the simulator. Aviat. Space Environ. Med. 75(8), 657–665 (2004)
Cruz-Neira, C., Sandin, D.J., DeFanti, T.A., Kenyon, R.V., Hart, J.C.: The cave: audio visual experience automatic virtual environment. Commun. ACM 35(6), 64–73 (1992)
Curry, C., Li, R., Peterson, N., Stoffregen, T.A.: Cybersickness in virtual reality head-mounted displays: examining the influence of sex differences and vehicle control. Int. J. Hum.-Comput. Interact. 36(12), 1–7 (2020)
Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016)
Dennison, M.S., D’Zmura, M.: Cybersickness without the wobble: experimental results speak against postural instability theory. Appl. Ergonomics 58, 215–223 (2017)
Draper, M.H., Viirre, E.S., Furness, T.A., Gawron, V.J.: Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Hum. Factors: J. Hum. Factors Ergon. Soc. 43(1), 129–146 (2001)
Edwards, C., Creaser, J., Caird, J., Lamsdale, A., Chisholm, S.: Older and younger driver performance at complex intersections: Implications for using perception-response time and driving simulation (2003)
Evangelista Belo, J.a.M., Feit, A.M., Feuchtner, T., Grønbæk, K.: Xrgonomics: Facilitating the creation of ergonomic 3d interfaces. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445349
Foy, C.R., Dudley, J.J., Gupta, A., Benko, H., Kristensson, P.O.: Understanding, detecting and mitigating the effects of coactivations in ten-finger mid-air typing in virtual reality. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445671
Frank, L.H., Kennedy, R.S., McCauley, M., Root, R., Kellogg, R.: Simulator sickness: Sensorimotor disturbances induced in flight simulators. Technical report, Naval Training Equipment Center Orlando FL (1984)
Golding, J.F.: Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Res. Bull. 47(5), 507–516 (1998)
Grassini, S., Laumann, K.: Are modern head-mounted displays sexist? a systematic review on gender differences in HMD-mediated virtual reality. Front. Psychol. 11, 1604 (2020)
Guenter, B., Finch, M., Drucker, S., Tan, D., Snyder, J.: Foveated 3d graphics. ACM Trans. Graph. (TOG) 31(6), 1–10 (2012)
Guo, C., Tsoi, C.W., Wong, Y.L., Yu, K.C., So, R.: Visually induced motion sickness during computer game playing. Contemp. Ergon. Hum. Factors 51(58), 51–58 (2013). ROUTLEDGE in association with GSE Research (2013)
Halbig, A., Latoschik, M.E.: A systematic review of physiological measurements, factors, methods, and applications in virtual reality. Front. Virtual Reality 25(2) (2021). https://doi.org/10.3389/frvir.2021.694567
Han, S., Yoon, P., Ha, M., Kim, K.: VR wayfinding training for people with visual impairment using VR treadmill and VR tracker. In: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 596–597 (2022). https://doi.org/10.1109/VRW55335.2022.00149
Han, S., et al.: Megatrack: monochrome egocentric articulated hand-tracking for virtual reality. ACM Trans. Graph. 39(4), 87 (2020)
Hashemian, A.M., Kruijff, E., Adhikari, A., Heyde, M.V.D., Aguilar, I., Riecke, B.E.: Is walking necessary for effective locomotion and interaction in VR? pp. 395–396. Institute of Electrical and Electronics Engineers Inc. (2021). https://doi.org/10.1109/VRW52623.2021.00084
Hodent, C.: The Gamer’s Brain: How Neuroscience and UX Can Impact Video Game Design. CRC Press, Boca Raton (2017). https://books.google.com.br/books?id=JzyhDwAAQBAJ
Hu, S., McChesney, K.A., Player, K.A., Bahl, A.M., Buchanan, J.B., Scozzafava, J.E.: Systematic investigation of physiological correlates of motion sickness induced by viewing an optokinetic rotating drum. Aviat. Space Environ. Med. (1999)
Hu, S., Stern, R.M., Vasey, M.W., Koch, K.L.: Motion sickness and gastric myoelectric activity as a function of speed of rotation of a circular vection drum. Aviat. Space Environ. Med. (1989)
Jeong, D., Yoo, S., Yun, J.: Cybersickness analysis with EEG using deep learning algorithms. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 827–835. IEEE (2019)
Jiang, F., Yang, X., Feng, L.: Real-time full-body motion reconstruction and recognition for off-the-shelf VR devices. In: Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry, vol. 1, pp. 309–318 (2016)
Jonathan, E., Roberts, C., Presentation, S., Razzaque, S., Kohn, Z., Whitton, M.: Redirected walking. In: Proceedings of Eurographics (2001)
Joyce, A.: 10 usability heuristics applied to virtual reality (2021)
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–150 (1986)
Kasahara, S., et al.: Malleable embodiment: changing sense of embodiment by spatial-temporal deformation of virtual human body. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 6438–6448 (2017)
Kemeny, A., Chardonnet, J.R., Colombet, F.: Getting Rid of Cybersickness: In Virtual Reality Augmented Reality, and Simulators. Springer, Cham (2020)
Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)
Kilgariff, E., Moreton, H., Stam, N., Bell, B.: Nvidia turing architecture in-depth (2018). https://developer.nvidia.com/blog/nvidia-turing-architecture-in-depth/
Kim, H.K., Park, J., Choi, Y., Choe, M.: Virtual reality sickness questionnaire (VRSQ): motion sickness measurement index in a virtual reality environment. Appl. Ergon. 69, 66–73 (2018)
Kim, J., Kim, W., Oh, H., Lee, S., Lee, S.: A deep cybersickness predictor based on brain signal analysis for virtual reality contents. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 10580–10589 (2019)
Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42(5), 616–625 (2005)
Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report, DTIC Document (1995)
Korein, J., Badler, N.: Temporal anti-aliasing in computer generated animation. In: Proceedings of the 10th Annual Conference on Computer Graphics and Interactive Techniques, pp. 377–388 (1983)
Koskela, M., Lotvonen, A., Mäkitalo, M., Kivi, P., Viitanen, T., Jääskeläinen, P.: Foveated real-time path tracing in visual-polar space. In: Proceedings of 30th Eurographics Symposium on Rendering. The Eurographics Association (2019)
Kunz, A., Zank, M., Kunz, A.: Using locomotion models for estimating walking targets in immersive virtual environments (2015). https://doi.org/10.3929/ethz-a-010530701
Lackner, J.: Human orientation, adaptation, and movement control. Motion Sickness Vis. Displays Armored Veh. Des. 28–50 (1990)
Langbehn, E.: Walking in Virtual Reality: Perceptually-inspired Interaction Techniques for Locomotion in Immersive Environments. Ph.D. thesis, Hamburg University (2019)
Langbehn, E., Lubos, P., Steinicke, F.: Evaluation of locomotion techniques for room-scale VR: joystick, teleportation, and redirected walking. In: Proceedings of the Virtual Reality International Conference-Laval Virtual, p. 4. ACM (2018)
LaViola, J.J., Jr.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32(1), 47–56 (2000)
Levoy, M., Whitaker, R.: Gaze-directed volume rendering. In: Proceedings of the 1990 Symposium on Interactive 3D Graphics, pp. 217–223 (1990)
Lin, C.T., Chuang, S.W., Chen, Y.C., Ko, L.W., Liang, S.F., Jung, T.P.: EEG effects of motion sickness induced in a dynamic virtual reality environment. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3872–3875. IEEE (2007)
Lin, J.J., Abi-Rached, H., Lahav, M.: Virtual guiding avatar: an effective procedure to reduce simulator sickness in virtual environments. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 719–726. ACM (2004)
Marques, B.A., Drumond, R.R., Vasconcelos, C.N., Clua, E.: Deep light source estimation for mixed reality. In: Visigrapp (1: grapp), pp. 303–311 (2018)
Marques, B.A.D., Clua, E.W.G., Vasconcelos, C.N.: Deep spherical harmonics light probe estimator for mixed reality games. Comput. Graph. 76, 96–106 (2018). https://doi.org/10.1016/j.cag.2018.09.003
Marques, B.A.D., Gonzalez Clua, E.W., Montenegro, A.A., Nader Vasconcelos, C.: Spatially and color consistent environment lighting estimation using deep neural networks for mixed reality. Comput. Graph. 102, 257–268 (2022). https://doi.org/10.1016/j.cag.2021.08.007. https://www.sciencedirect.com/science/article/pii/S0097849321001710
Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: ACM SIGGRAPH 2016 Emerging Technologies. SIGGRAPH 2016, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2929464.2929482
McCauley, M.E., Sharkey, T.J.: Cybersickness: perception of self-motion in virtual environments. Presence: Teleoperators Virtual Environ. 1(3), 311–318 (1992)
McCullough, M., et al.: Myo arm: swinging to explore a VE. In: Proceedings of the ACM SIGGRAPH Symposium on Applied Perception, pp. 107–113. SAP 2015, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2804408.2804416
Meng, X., Du, R., Varshney, A.: Eye-dominance-guided foveated rendering. IEEE Trans. Visual Comput. Graph. 26(5), 1972–1980 (2020)
Morales, R., Chelen, W., Kabrisky, M.: Electroencephalographic theta band changes during motion sickness. Aviat. Space Environ. Med. 61, 507 (1990)
Nalivaiko, E., Rudd, J.A., So, R.H.: Motion sickness, nausea and thermoregulation: the “toxic’’ hypothesis. Temperature 1(3), 164–171 (2014)
Naqvi, S.A.A., Badruddin, N., Jatoi, M.A., Malik, A.S., Hazabbah, W., Abdullah, B.: EEG based time and frequency dynamics analysis of visually induced motion sickness (VIMS). Australas. Phys. Eng. Sci. Med. 38(4), 721–729 (2015)
Nguyen, A.: Identification of Redirected Walking in Immersive Virtual Enviroments. Ph.D. thesis, ETH Zurich (2021)
Nichols, S.: Physical ergonomics of virtual environment use. Appl. Ergon. 30(1), 79–90 (1999). https://doi.org/10.1016/S0003-6870(98)00045-3, https://www.sciencedirect.com/science/article/pii/S0003687098000453
Olano, M., Cohen, J., Mine, M., Bishop, G.: Combatting rendering latency. In: Proceedings of the 1995 Symposium on Interactive 3D graphics. pp. 19-ff. ACM (1995)
de Oliveira, E., Clua, E.W.G., Vasconcelos, C.N., Marques, B.A.D., Trevisan, D.G., de Castro Salgado, L.C.: FPVRGame: deep learning for hand pose recognition in real-time using low-end HMD. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 70–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34644-7_6
Oliveira, W., Tizuka, M., Clua, E., Trevisan, D., Salgado, L.: Virtual and real body representation in mixed reality: an analysis of self-presence and immersive environments. In: van der Spek, E., Göbel, S., Do, E.Y.-L., Clua, E., Baalsrud Hauge, J. (eds.) ICEC-JCSG 2019. LNCS, vol. 11863, pp. 42–54. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34644-7_4
Pandey, R., et al.: Total relighting: learning to relight portraits for background replacement. ACM Trans. Graph. 40(4) (2021). https://doi.org/10.1145/3450626.3459872
Park, G., Rosenthal, T.J., Allen, R.W., Cook, M.L., Fiorentino, D., Viirre, E.: Simulator sickness results obtainted during a novice driver training study. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 48, pp. 2652–2655. SAGE Publications Sage CA, Los Angeles, CA (2004)
Patney, A., et al.: Towards foveated rendering for gaze-tracked virtual reality. ACM Trans. Graph. (TOG) 35(6), 1–12 (2016)
Poh, M.Z., Swenson, N.C., Picard, R.W.: A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Trans. Biomed. Eng. 57(5), 1243–1252 (2010)
Poole, A., Ball, L.J.: Eye tracking in HCI and usability research. In: Encyclopedia of Human Computer Interaction, pp. 211–219. IGI Global (2006)
Porac, C., Coren, S.: The dominant eye. Psychol. Bull. 83(5), 880 (1976)
Porcino, T., Clua, E., Vasconcelos, C., Trevisan, D.: Dynamic focus selection for first-person navigation with head mounted displays. SBGames (2016)
Porcino, T., Rodrigues, E.O., Bernardini, F., Trevisan, D., Clua, E.: Identifying cybersickness causes in virtual reality games using symbolic machine learning algorithms. Entertainment Comput. 41, 100473 (2022)
Porcino, T., Rodrigues, E.O., Silva, A., Clua, E., Trevisan, D.: Using the gameplay and user data to predict and identify causes of cybersickness manifestation in virtual reality games. In: 2020 IEEE 8th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–8. IEEE (2020)
Porcino, T.M., Clua, E., Trevisan, D., Vasconcelos, C.N., Valente, L.: Minimizing cyber sickness in head mounted display systems: design guidelines and applications. In: 2017 IEEE 5th International Conference on Serious Games and Applications for Health (SeGAH), pp. 1–6. IEEE (2017)
Qi, M., Liu, Y., Cui, J.: A novel redirected walking algorithm for VR navigation in small tracking area, pp. 518–519. Institute of Electrical and Electronics Engineers Inc. (2021). https://doi.org/10.1109/VRW52623.2021.00141
Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. R. Soc. Med. 71(11), 819–829 (1978)
Reason, J.T., Brand, J.J.: Motion Sickness. Academic press, Cambridge (1975)
Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9
Rebenitsch, L.R.: Cybersickness Prioritization and Modeling. Michigan State University, Michigan (2015)
Reder, S.M.: On-line monitoring of eye-position signals in contingent and noncontingent paradigms. Behav. Res. Methods Instrum. 5(2), 218–228 (1973)
Regan, L., Mandryk, K.M.I., Calvert, T.W.: Using psychophysiological techniques to measure user experience with entertainment technologies. Behav. Inf. Technol. 25(2), 141–158 (2006). https://doi.org/10.1080/01449290500331156
Riecke, B.E., LaViola, J.J., Kruijff, E.: 3D user interfaces for virtual reality and games: 3D selection, manipulation, and spatial navigation. In: ACM SIGGRAPH 2018 Courses. SIGGRAPH 2018, Association for Computing Machinery, New York, NY, USA (2018). https://doi.org/10.1145/3214834.3214869
Rietzler, M., Gugenheimer, J., Hirzle, T., Deubzer, M., Langbehn, E., Rukzio, E.: Rethinking redirected walking: on the use of curvature gains beyond perceptual limitations and revisiting bending gains. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 115–122 (2018). https://doi.org/10.1109/ISMAR.2018.00041
Riva, G.: Virtual Reality in Neuro-psycho-physiology: Cognitive, Clinical and Methodological Issues in Assessment and Rehabilitation, vol. 44. IOS press, Amsterdam (1997)
Sanei, S., Chambers, J.A.: EEG signal processing (2007)
Sevinc, V., Berkman, M.I.: Psychometric evaluation of simulator sickness questionnaire and its variants as a measure of cybersickness in consumer virtual environments. Appl. Ergon. 82, 102958 (2020)
Shin, J.E., Yoon, B., Kim, D., Woo, W.: A user-oriented approach to space-adaptive augmentation: the effects of spatial affordance on narrative experience in an augmented reality detective game. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems. CHI 2021, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3411764.3445675
Slater, M., Wilbur, S.: A framework for immersive virtual environments (five): speculations on the role of presence in virtual environments. Presence: Teleoperators Virtual Environ. 6(6), 603–616 (1997)
So, R.H., Lo, W., Ho, A.T.: Effects of navigation speed on motion sickness caused by an immersive virtual environment. Hum. Factors: J. Hum. Factors Ergon. Soc. 43(3), 452–461 (2001)
Stanney, K.M., Kennedy, R.S., Drexler, J.M.: Cybersickness is not simulator sickness. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 41, pp. 1138–1142. SAGE Publications Sage CA, Los Angeles, CA (1997)
Sugita, N., et al.: Quantitative evaluation of effects of visually-induced motion sickness based on causal coherence functions between blood pressure and heart rate. Displays 29(2), 167–175 (2008)
Suma, E.A., Bruder, G., Steinicke, F., Krum, D.M., Bolas, M.: A taxonomy for deploying redirection techniques in immersive virtual environments (2012)
Sun, Q., et al.: Towards virtual reality infinite walking: dynamic saccadic redirection. ACM Trans. Graph. 37(4) (2018). https://doi.org/10.1145/3197517.3201294
Swafford, N.T., Iglesias-Guitian, J.A., Koniaris, C., Moon, B., Cosker, D., Mitchell, K.: User, metric, and computational evaluation of foveated rendering methods. In: Proceedings of the ACM Symposium on Applied Perception, pp. 7–14 (2016)
Taylor, J., et al.: Articulated distance fields for ultra-fast tracking of hands interacting. ACM Trans. Graph. (TOG) 36(6), 1–12 (2017)
Valente, L., Feijó, B., do Prado Leite, J.C.S., Clua, E.: A method to assess pervasive qualities in mobile games. Pers. Ubiquit. Comput. 22(4), 647–670 (2018)
Wang, L., Chen, W., Yang, W., Bi, F., Yu, F.R.: A state-of-the-art review on image synthesis with generative adversarial networks. IEEE Access 8, 63514–63537 (2020). https://doi.org/10.1109/ACCESS.2020.2982224
Warren, L.E., Bowman, D.A.: User experience with semi-natural locomotion techniques in virtual reality: the case of the virtuix omni. In: Proceedings of the 5th Symposium on Spatial User Interaction, p. 163. SUI 2017, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3131277.3134359
Web, T.N.: Fove’s \$250,000 kickstarter campaign wants to bring eye-tracking control to virtual reality (2021). https://thenextweb.com/news/foves-250000-kickstarter-campaign-wants-to-bring-eye-tracking-control-to-virtual-reality. Accessed 28 July 2021
Weier, M., et al.: Foveated real-time ray tracing for head-mounted displays. Comput. Graph. Forum 35(7), 289–298 (2016)
Xie, N., Ras, G., van Gerven, M., Doran, D.: Explainable deep learning: A field guide for the uninitiated. arXiv:2004.14545 (2020)
Xu, L., et al.: Hypothalamic and gastric myoelectrical responses during vection-induced nausea in healthy Chinese subjects. Am. J. Physiol.-Endocrinol. Metab. 265(4), E578–E584 (1993)
Yan, Y., Chen, K., Xie, Yu., Song, Y., Liu, Y.: The effects of weight on comfort of virtual reality devices. In: Rebelo, F., Soares, M.M. (eds.) AHFE 2018. AISC, vol. 777, pp. 239–248. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94706-8_27
Yang, J., Guo, C., So, R., Cheung, R.: Effects of eye fixation on visually induced motion sickness: are they caused by changes in retinal slip velocity? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 55, pp. 1220–1224. SAGE Publications Sage CA, Los Angeles, CA (2011)
Yang, X., Wang, D., Hu, H., Yue, K.: P-31: visual fatigue assessment and modeling based on ECG and EOG caused by 2D and 3D displays. SID Symp. Digest Tech. Pap. 47(1), 1237–1240 (2016)
Yao, R., Heath, T., Davies, A., Forsyth, T., Mitchell, N., Hoberman, P.: Oculus VR best practices guide
Zhan, F., et al.: Sparse needlets for lighting estimation with spherical transport loss. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12830–12839 (2021)
Zielasko, D., Horn, S., Freitag, S., Weyers, B., Kuhlen, T.W.: Evaluation of hands-free HMD-based navigation techniques for immersive data analysis. In: 2016 IEEE Symposium on 3D User Interfaces (3DUI), pp. 113–119 (2016). https://doi.org/10.1109/3DUI.2016.7460040
Zwicker, M., et al.: Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Comput. Graph. Forum (Proceedings of Eurographics - State of the Art Reports) 34(2), 667–681 (2015). https://doi.org/10/f7k6kj
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Clua, E.W.G. et al. (2023). Challenges for XR in Games. In: Santos, R.P.d., Hounsell, M.d.S. (eds) Grand Research Challenges in Games and Entertainment Computing in Brazil - GranDGamesBR 2020–2030. GranDGamesBR GranDGamesBR 2020 2021. Communications in Computer and Information Science, vol 1702. Springer, Cham. https://doi.org/10.1007/978-3-031-27639-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-27639-2_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-27638-5
Online ISBN: 978-3-031-27639-2
eBook Packages: Computer ScienceComputer Science (R0)