Skip to main content

Abstract

Emotion recognition is a hot research area in deep learning and computer vision that analyses expressions from both static and dynamic sequences of facial expressions to reveal human emotional states. In recent decades, deep learning approaches have been exhibiting a superior performance on image representation datasets. However, the convolutional neural network (CNN) requires a larger number of labeled datasets for training and accurate classification results. It is always inevitable, whereas unsupervised representation learning models like autoencoder do not require labeled information for training. Meanwhile, it is difficult to infer the feature map when the size of the CNN layer is increased. To address these challenges, this paper introduced a self-supervised deep learning technique called convolutional sparse autoencoder (CSA) which can learn robust features from small data with unlabeled facial expression datasets. Moreover, sparsity is added in the max pooling layer for the feature map which makes the backpropagation optimizer Adam work efficiently for the CSA training; thus, no complicated optimizer is not involved. Finally, the trained convolutional sparse encoder part is combined with the softmax layer for emotion classification. The performance results demonstrate that the proposed approach achieved 98% of accuracy on the CK+ dataset and outperforms various state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kołakowska, A., Landowska, A., Szwoch, M., Szwoch, W., Wróbel, M.R.: Emotion recognition and its applications. In: Hippe, Z., Kulikowski, J., Mroczek, T., Wtorek, J. (eds.) Human-Computer Systems Interaction: Backgrounds and Applications 3. AISC, vol. 300, pp. 51–62. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08491-6_5

  2. Zhang, Y.: A better autoencoder for image: convolutional autoencoder. In: ICONIP17-DCEC (2018). http://users.cecs.anu.edu.au/Tom.Gedeon/conf/ABCs2018/paper/ABCs2018_paper_58.pdf

  3. Bank, D., Koenigstein, N., Giryes, R.: Autoencoders. arXiv preprint arXiv:2003.05991 (2020)

  4. Zhao, X., Shi, X., Zhang, S.: Facial expression recognition via deep learning. IETE Tech. Rev. 32(5), 347–355 (2015)

    Article  Google Scholar 

  5. Mollahosseini, A., Chan, D., Mahoor, M.H.: Going deeper in facial expression recognition using deep neural networks. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–10. IEEE (2016)

    Google Scholar 

  6. Jaiswal, A., Raju, A.K., Deb, S.: Facial emotion detection using deep learning. In: 2020 International Conference for Emerging Technology (INCET), pp. 1–5. IEEE (2020)

    Google Scholar 

  7. Minaee, S., Minaei, M., Abdolrashidi, A.: Deep emotion: facial expression recognition using the attentional convolutional network. Sensors 21(9), 3046 (2021)

    Article  Google Scholar 

  8. Akhand, M.A.H., Roy, S., Siddique, N., Kamal, M.A.S., Shimamura, T.: Facial emotion recognition using transfer learning in the deep CNN. Electronics 10(9), 1036(2021)

    Google Scholar 

  9. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  10. Kavukcuoglu, K., Sermanet, P., Boureau, Y.L., Gregor, K., Mathieu, M., Cun, Y.: Learning convolutional feature hierarchies for visual recognition. In: Advances in Neural Information Processing Systems, vol. 23 (2010)

    Google Scholar 

  11. Bristow, H., Eriksson, A., Lucey, S.: Fast convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 391–398 (2013)

    Google Scholar 

  12. Rigamonti, R., et al.: On the relevance of sparsity for image classification. Comput. Vis. Image Underst. 125, 115–127 (2014)

    Article  Google Scholar 

  13. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

  14. Zeng, N., Zhang, H., Song, B., Liu, W., Li, Y., Dobaie, A.M.: Facial expression recognition via learning deep sparse autoencoders. Neurocomputing 273, 643–649 (2018)

    Article  Google Scholar 

  15. Liu, Y., Hou, X., Chen, J., Yang, C., Su, G., Dou, W.: Facial expression recognition and generation using sparse autoencoder. In: 2014 International Conference on Smart Computing, pp. 125–130 (2014). IEEE

    Google Scholar 

  16. Usman, M., Latif, S., Qadir, J.: Using deep autoencoders for facial expression recognition. In: 2017 13th International Conference on Emerging Technologies (ICET), pp. 1–6 (2017). IEEE

    Google Scholar 

  17. Lv, Y., Feng, Z., Xu, C.: Facial expression recognition via deep learning. In: 2014 International Conference on Smart Computing, pp. 303–308 (2014). IEEE

    Google Scholar 

  18. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

  19. Boughida, A., Kouahla, M.N., Lafifi, Y.: A novel approach for facial expression recognition based on Gabor filters and genetic algorithm. Evol. Syst. 13(2), 331–345 (2021)

    Google Scholar 

  20. Uddin, M.Z., Lee, J.J., Kim, T.S.: An enhanced independent component-based human facial expression recognition from video. IEEE Trans. Consum. Electron. 55(4), 2216–2224 (2009)

    Article  Google Scholar 

  21. Zhang, L., Tjondronegoro, D.: Facial expression recognition using facial movement features. IEEE Trans. Affect. Comput. 2(4), 219–229 (2011)

    Article  Google Scholar 

  22. Happy, S.L., Routray, A.: Automatic facial expression recognition using features of salient facial patches. IEEE Trans. Affect. Comput. 6(1), 1–12 (2014)

    Article  Google Scholar 

  23. Mishra, S., Joshi, B., Paudyal, R., Chaulagain, D., Shakya, S.: Deep residual learning for facial emotion recognition. In: Shakya, S., Bestak, R., Palanisamy, R., Kamel, K.A. (eds.) Mobile Computing and Sustainable Informatics. LNDECT, vol. 68, pp. 301–313. Springer, Singapore (2022). https://doi.org/10.1007/978-981-16-1866-6_22

  24. Yang, S., Kim, Y., Kim, Y., Kim, C.: Combinational class activation maps for weakly supervised object localization. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2941–2949 (2020)

    Google Scholar 

  25. The Extended Cohn-Kanada Database. https://www.ri.cmu.edu/. Accessed 15 Nov 2022

Download references

Acknowledgment

The authors wish to express their sincere thanks to the Centre for Machine Learning and Intelligence (CMLI) for providing resources to conduct this research study. This centre is sponsored and supported by the Department of Science and Technology (DST)-CURIE, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohana, M., Subashini, P. (2023). Convolutional Sparse Autoencoder for Emotion Recognition. In: Hassanien, A.E., et al. The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023. AICV 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-031-27762-7_1

Download citation

Publish with us

Policies and ethics