Skip to main content

Enhancement of Security in GFDM Using Ebola-Optimized Joint Secure Compressive Sensing Encryption and Symbol Scrambling Model

  • Conference paper
  • First Online:
The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023 (AICV 2023)

Part of the book series: Lecture Notes on Data Engineering and Communications Technologies ((LNDECT,volume 164))

  • 532 Accesses

Abstract

The security of data transmission over the Passive Optical Network (PON) is a very challenging task. In this research work, joint secure compressive sensing encryption and symbol scrambling method is introduced in the Generalized Frequency Division Multiplexing (GFDM) systems to overcome this problem. After compression, CS data is converted into Binary Phase Shift Keying (BPSK) symbols, the SHA-256 technique is used for key generation purposes, and the key selection process is performed to improve the high security of the proposed system. Ebola meta-heuristic scheme is proposed for the optimal key selection process. The maximum Peak-To-Signal Noise Ratio (PSNR) value is the Objective Function (OF) of this proposed key selection to choose the optimal secret key from the random numbers. Finally, the symbol scrambling function is performed on the resulting BPSK symbols to improve the security of the CS data. The performance of this proposed system is compared with some of the existing methods The achieved values of the proposed GFDM-PON for PSNR, MSE, Entropy, encryption time, and decryption time are 57.86319, 0.004114, 9.495201, 0.054, and 0.048, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sánchez, J.D.V., Urquiza-Aguiar, L., Paredes, M.C.P., Osorio, D.P.M.: Survey on physical layer security for 5G wireless networks. Ann. Telecommun. 76(3–4), 155–174 (2020). https://doi.org/10.1007/s12243-020-00799-8

    Article  Google Scholar 

  2. Nandan, N., Majhi, S., Wu, H.C.: Beamforming and power optimization for physical layer security of MIMO-NOMA based CRN over imperfect CSI. IEEE Trans. Veh. Technol. 70(6), 5990–6001 (2021)

    Article  Google Scholar 

  3. Sultan, A., Yang, X., Hajomer, A.A.E., Hu, W.: Chaotic constellation mapping for physical-layer data encryption in OFDM-PON. IEEE Photonics Technol. Lett. 30(4), 339–342 (2018)

    Article  Google Scholar 

  4. Katsuki, Y., de Abreu, G.T.F., Ishibashi, K., Ishikawa, N.: Noncoherent massive MIMO with embedded one-way function physical layer security, p. 11893 (2022)

    Google Scholar 

  5. Qi, Q., Chen, X., Zhong, C., Zhang, Z.: Physical layer security for massive access in cellular internet of things. Sci. China Inf. Sci. 63(2), 1–12 (2020)

    Article  Google Scholar 

  6. Ghanbarisabagh, M., Vetharatnam, G., Giacoumidis, E., Rouzegar, H., Mallouki, N.: A Survey on High-Capacity OFDM-based Passive Optical Networks. 4692 (2018)

    Google Scholar 

  7. Maeng, S.J., Yapici, Y., Guvenc, I., Bhuyan, A., Dai, H.: Precoder design for physical-layer security and authentication in massive MIMO UAV communications. IEEE Trans. Veh. Technol. 71(3), 2949–2964 (2022)

    Article  Google Scholar 

  8. Wang, W.Q., Zheng, Z.: Hybrid MIMO and phased-array directional modulation for physical layer security in mmwave wireless communications. IEEE J. Sel. Areas Commun. 36(7), 1383–1396 (2018)

    Article  Google Scholar 

  9. Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K.K., Gao, X.: A survey of physical layer security techniques for 5G wireless networks and challenges ahead. IEEE J. Sel. Areas Commun. 36(4), 679–695 (2018)

    Article  Google Scholar 

  10. Zhu, F., Gao, F., Lin, H., Jin, S., Zhao, J., Qian, G.: Robust beamforming for physical layer security in BDMA massive MIMO. IEEE J. Sel. Areas Commun. 36(4), 775–787 (2018)

    Article  Google Scholar 

  11. Zhang, C., Zhang, W., He, X., Chen, C., Zhang, H., Qiu, K.: Physically secured optical OFDM-PON by employing chaotic pseudo-random RF subcarriers. IEEE Photonics J. 9(5), 1–8 (2017)

    Google Scholar 

  12. Hu, Z., Chan, C.K.: A real-valued chaotic orthogonal matrix transform-based encryption for OFDM-PON. IEEE Photonics Technol. Lett. 30(16), 1455–1458 (2018)

    Article  Google Scholar 

  13. Bi, M., et al.: Chaotic arnold transform and chirp matrix encryption scheme for enhancing the performance and security of OFDM-PON. Opt. Fiber Technol. 51, 64–70 (2019)

    Article  Google Scholar 

  14. Li, M., et al.: Flexible non-linear physical security coding scheme combined with chaotic neural network for OFDM-WDM-PON. Opt. Express 29(16), 25848–25858 (2021)

    Article  Google Scholar 

  15. Fu, X., et al.: A chaotic modified-DFT encryption scheme for physical layer security and PAPR reduction in OFDM-PON. Opt. Fiber Technol. 42, 126–131 (2018)

    Article  Google Scholar 

  16. Deng, L., et al.: Secure OFDM-PON system based on chaos and fractional fourier transform techniques. J. Lightwave Technol. 32(15), 2629–2635 (2014)

    Article  Google Scholar 

  17. Wu, T., et al.: Compressive sensing chaotic encryption algorithms for OFDM-PON data transmission. Opt. Express 29(3), 3669–3684 (2021)

    Article  Google Scholar 

  18. Wu, T., et al.: Security enhancement for OFDM-PON using brownian motion and chaos in cell. Opt. Express 26(18), 22857–22865 (2018)

    Article  Google Scholar 

  19. Zhang, C., Zhang, W., Chen, C., He, X., Qiu, K.: Physical-enhanced secure strategy for OFDMA-PON using chaos and deoxyribonucleic acid encoding. J. Lightwave Technol. 36(9), 1706–1712 (2018)

    Article  Google Scholar 

  20. Yu, H.: Apriori algorithm optimization based on spark platform under big data. Microprocess. Microsyst. 80, 103528 (2021)

    Google Scholar 

  21. Liu, Y., Chang, X., Zhou, Y., Dang, S., Shi, J., Liu, Z.: HIVE: route optimization problem of automatic delivery system with mobile depot and multiple drones. In: 2021 IEEE 23rd International Conference on High Performance Computing & Communications; 7th International Conference on Data Science & Systems; 19th International Conference on Smart City; 7th International Conference on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys)), pp. 1338–1345 (2021)

    Google Scholar 

  22. Wang, F., Zhang, H., Zhou, A.: A particle swarm optimization algorithm for mixed-variable optimization problems. Swarm Evol. Comput. 60, 100808 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulshan Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rather, I.A., Kumar, G., Saha, R., Kim, Th. (2023). Enhancement of Security in GFDM Using Ebola-Optimized Joint Secure Compressive Sensing Encryption and Symbol Scrambling Model. In: Hassanien, A.E., et al. The 3rd International Conference on Artificial Intelligence and Computer Vision (AICV2023), March 5–7, 2023. AICV 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-031-27762-7_49

Download citation

Publish with us

Policies and ethics