Skip to main content

Weighted Multi-view Clustering Based on Internal Evaluation

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

  • 1723 Accesses

Abstract

As real-world data are often represented by multiple sets of features in different views, it is desirable to improve clustering results with respect to ordinary single-view clustering by making use of the consensus and complementarity among different views. For this purpose, weighted multi-view clustering is proposed to combine multiple individual views into one single combined view, which is used to generate the final clustering result. In this paper we present a simple yet effective weighted multi-view clustering algorithm based on internal evaluation of clustering results. Observing that an internal evaluation criterion can be used to estimate the quality of clustering results, we propose to weight different views to maximize the clustering quality in the combined view. We firstly introduce an implementation of the Dunn index and a heuristic method to determine the scale parameter in spectral clustering. Then an adaptive weight initialization and updating method is proposed to improve the clustering results iteratively. Finally we do spectral clustering in the combined view to generate the clustering result. In experiments with several publicly available image and text datasets, our algorithm compares favorably or comparably with some other algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bickel, S., Scheffer, T.: Multi-view clustering. In: IEEE International Conference on Data Mining, pp. 19ā€“26 (2004)

    Google Scholar 

  2. Boutalbi, R., Labiod, L., Nadif, M.: Implicit consensus clustering from multiple graphs. Data Min. Knowl. Disc. 35(6), 2313ā€“2340 (2021). https://doi.org/10.1007/s10618-021-00788-y

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, X., Xu, X., Huang, J.Z., Ye, Y.: Tw-k-means: automated two-level variable weighting clustering algorithm for multiview data. IEEE Trans. Knowl. Data Eng. 25(4), 932ā€“944 (2011)

    Article  Google Scholar 

  4. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95ā€“104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Huang, H.C., Chuang, Y.Y., Chen, C.S.: Affinity aggregation for spectral clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 773ā€“780 (2012)

    Google Scholar 

  6. Huang, S., Xu, Z., Tsang, I.W., Kang, Z.: Auto-weighted multi-view co-clustering with bipartite graphs. Inf. Sci. 512, 18ā€“39 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Huang, Z., Zhou, J.T., Peng, X., Zhang, C., Zhu, H., Lv, J.: Multi-view spectral clustering network. In: International Joint Conference on Artificial Intelligence, pp. 2563ā€“2569 (2019)

    Google Scholar 

  8. Kumar, A., Rai, P., III, H.D.: Co-regularized multi-view spectral clustering. In: International Conference on Neural Information Processing Systems, pp. 1413ā€“1421 (2011)

    Google Scholar 

  9. Liang, Y., Huang, D., Wang, C.D.: Consistency meets inconsistency: a unified graph learning framework for multi-view clustering. In: IEEE International Conference on Data Mining, pp. 1204ā€“1209 (2019)

    Google Scholar 

  10. Liu, J., Cao, F., Gao, X.Z., Yu, L., Liang, J.: A cluster-weighted kernel k-means method for multi-view clustering. In: AAAI Conference on Artificial Intelligence, pp. 4860ā€“4867 (2020)

    Google Scholar 

  11. Luo, S., Zhang, C., Zhang, W., Cao, X.: Consistent and specific multi-view subspace clustering. In: AAAI Conference on Artificial Intelligence, pp. 3730ā€“3737 (2018)

    Google Scholar 

  12. Lyon, A.: Why are normal distributions normal? Britishi J. Philos. Sci. 65(3), 621ā€“649 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Nie, F., Tian, L., Li, X.: Multiview clustering via adaptively weighted procrustes. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2022ā€“2030 (2018)

    Google Scholar 

  14. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 167ā€“172 (2000)

    Google Scholar 

  15. Wu, J., Lin, Z., Zha, H.: Essential tensor learning for multi-view spectral clustering. IEEE Trans. Image Process. 28(12), 5910ā€“5922 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xia, R., Pan, Y., Du, L., Yin, J.: Robust multi-view spectral clustering via low-rank and sparse decomposition. In: AAAI Conference on Artificial Intelligence, pp. 2149ā€“2155 (2014)

    Google Scholar 

  17. Xia, W., Gao, Q., Wang, Q., Gao, X., Ding, C., Tao, D.: Tensorized bipartite graph learning for multi-view clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1ā€“16 (2022). https://doi.org/10.1109/TPAMI.2022.3187976

  18. Xie, J., Xiong, Z.Y., Dai, Q.Z., Wang, X.X., Zhang, Y.F.: A new internal index based on density core for clustering. Inf. Sci. 506, 346ā€“365 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Xu, P., Deng, Z., Choi, K.S., Cao, L., Wang, S.: Multi-view information-theoretic co-clustering for co-occurrence data. In: AAAI Conference on Artificial Intelligence, pp. 379ā€“386 (2019)

    Google Scholar 

  20. Xu, Y.M., Wang, C.D., Lai, J.H.: Weighted multi-view clustering with feature selection. Pattern Recogn. 53, 25ā€“35 (2016)

    Article  Google Scholar 

  21. Yin, H., Wang, G., Hu, W., Zhang, Z.: Fine-grained multi-view clustering with robust multi-prototypes representation. Appl. Intell. 1ā€“19 (2022). https://doi.org/10.1007/s10489-022-03898-2

  22. Yin, M., Gao, J., Xie, S., Guo, Y.: Multiview subspace clustering via tensorial t-product representation. IEEE Trans. Neural Netw. Learn. Syst. 30(3), 851ā€“864 (2019)

    Article  MathSciNet  Google Scholar 

  23. Zhan, K., Nie, F., Wang, J., Yang, Y.: Multiview consensus graph clustering. IEEE Trans. Image Process. 28(3), 1261ā€“1270 (2018)

    Article  MathSciNet  Google Scholar 

  24. Zhan, K., Zhang, C., Guan, J., Wang, J.: Graph learning for multiview clustering. IEEE Trans. Cybern. 48(10), 2887ā€“2895 (2017)

    Article  Google Scholar 

  25. Zhou, S., et al.: Multi-view spectral clustering with optimal neighborhood laplacian matrix. In: AAAI Conference on Artificial Intelligence, pp. 6965ā€“6972 (2020)

    Google Scholar 

  26. Zhu, X., Zhang, S., He, W., Hu, R., Lei, C., Zhu, P.: One-step multi-view spectral clustering. IEEE Trans. Knowl. Data Eng. 31(10), 2022ā€“2034 (2019)

    Article  Google Scholar 

  27. Zong, L., Zhang, X., Liu, X., Yu, H.: Weighted multi-view spectral clustering based on spectral perturbation. In: AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China under Grant No. 62176057 and No. 61972090

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, H., Hou, J., Yuan, H. (2023). Weighted Multi-view Clustering Based on Internal Evaluation. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics