Skip to main content

LAE-Net: Light and Efficient Network for Compressed Video Action Recognition

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

Abstract

Action recognition is a crucial task in computer vision and video analysis. The Two-stream network and 3D ConvNets are representative works. Although both of them have achieved outstanding performance, the optical flow and 3D convolution require huge computational effort, without taking into account the need for real-time applications. Current work extracts motion vectors and residuals directly from the compressed video to replace optical flow. However, due to the noisy and inaccurate representation of the motion, the accuracy of the model is significantly decreased when using motion vectors as input. Besides the current works focus only on improving accuracy or reducing computational cost, without exploring the tradeoff strategy between them. In this paper, we propose a light and efficient multi-stream framework, including a motion temporal fusion module (MTFM) and a double compressed knowledge distillation module (DCKD). MTFM improves the network’s ability to extract complete motion information and compensates to some extent for the problem of inaccurate description of motion information by motion vectors in compressed video. DCKD allows the student network to gain more knowledge from teacher with less parameters and input frames. Experimental results on the two public benchmarks(UCF-101 and HMDB-51) outperform the state of the art on the compressed domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  2. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1933–1941 (2016)

    Google Scholar 

  3. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  4. Zhu, Y., Lan, Z., Newsam, S., Hauptmann, A.: Hidden two-stream convolutional networks for action recognition. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 363–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_23

    Chapter  Google Scholar 

  5. Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: Actionvlad: learning spatio-temporal aggregation for action classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 971–980 (2017)

    Google Scholar 

  6. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  7. Diba, A., et al.: Temporal 3d convnets: new architecture and transfer learning for video classification. arXiv preprint arXiv:1711.08200 (2017)

  8. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: proceedings of the IEEE International Conference on Computer Vision, pp. 5533–5541 (2017)

    Google Scholar 

  9. Kantorov, V., Laptev, I.: Efficient feature extraction, encoding and classification for action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2593–2600 (2014)

    Google Scholar 

  10. Töreyin, B.U., Cetin, A.E., Aksay, A., Akhan, M.B.: Moving object detection in wavelet compressed video. Sig. Process. Image Commun. 20(3), 255–264 (2005)

    Article  Google Scholar 

  11. Yeo, B.L., Liu, B.: Rapid scene analysis on compressed video. IEEE Trans. Circuits Syst. Video Tech. 5(6), 533–544 (1995)

    Article  Google Scholar 

  12. Wu, C.Y., Zaheer, M., Hu, H., Manmatha, R., Smola, A.J., Krähenbühl, P.: Compressed video action recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6026–6035 (2018)

    Google Scholar 

  13. Shou, Z., et al.: Dmc-net: generating discriminative motion cues for fast compressed video action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1268–1277 (2019)

    Google Scholar 

  14. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2718–2726 (2016)

    Google Scholar 

  15. Wu, M.C., Chiu, C.T.: Multi-teacher knowledge distillation for compressed video action recognition based on deep learning. J. Syst. Archit. 103, 101695 (2020)

    Article  Google Scholar 

  16. Lin, J., Gan, C., Han, S.: Tsm: temporal shift module for efficient video understanding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7083–7093 (2019)

    Google Scholar 

  17. Zhao, B., Cui, Q., Song, R., Qiu, Y., Liang, J.: Decoupled knowledge distillation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11953–11962 (2022)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Soomro, K., Zamir, A.R., Shah, M.: A dataset of 101 human action classes from videos in the wild. Center for Res. Comput. Vis. 2(11) (2012)

    Google Scholar 

  20. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: Hmdb: a large video database for human motion recognition. In: 2011 International Conference on Computer Vision, pp. 2556–2563. IEEE (2011)

    Google Scholar 

  21. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6299–6308 (2017)

    Google Scholar 

  22. Yang, K., et al.: IF-TTN: Information fused temporal transformation network for video action recognition. arXiv Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  23. Huo, Y., Xu, X., Lu, Y., Niu, Y., Lu, Z., Wen, J.R.: Mobile video action recognition. arXiv preprint arXiv:1908.10155 (2019)

  24. Battash, B., Barad, H., Tang, H., Bleiweiss, A.: Mimic the raw domain: accelerating action recognition in the compressed domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 684–685 (2020)

    Google Scholar 

  25. Chen, J., Ho, C.M.: Mm-vit: multi-modal video transformer for compressed video action recognition. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1910–1921 (2022)

    Google Scholar 

  26. Yang, X., Yang, C.: Imrnet: an iterative motion compensation and residual reconstruction network for video compressed sensing. In: ICASSP 2021–2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2350–2354. IEEE (2021)

    Google Scholar 

  27. Li, B., Kong, L., Zhang, D., Bao, X., Huang, D., Wang, Y.: Towards practical compressed video action recognition: a temporal enhanced multi-stream network. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3744–3750. IEEE (2021)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Inner Mongolia Natural Science Foundation of China under Grant No. 2021MS06016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Zhang, J., Zhang, X., Ma, M. (2023). LAE-Net: Light and Efficient Network for Compressed Video Action Recognition. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics