Skip to main content

HSS: A Hierarchical Semantic Similarity Hard Negative Sampling Method for Dense Retrievers

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13834))

Included in the following conference series:

  • 1206 Accesses

Abstract

Dense Retriever (DR) for Open-domain textual question answering (OpenQA), which aims to retrieve passages from large data sources like Wikipedia or Google, has gained wide attention in recent years. Although DR models continuously refresh state-of-the-art performances, their improvement relies on negative sampling during the training process. Existing sampling strategies mainly focus on developing a complex algorithm based on computer science, and ignore the abundant semantic features of datasets. We discover that there exists obvious changes in semantic similarity and present a three-level hierarchy of semantic similarity: same topic, same class, other class, whose rationality is further demonstrated by ablation study. Based on this, we propose a hard negative sampling strategy named Hierarchical Semantic Similarity (HSS). Our HSS model performs negative sampling at semantic levels of topic and class, and experimental results on four datasets show that it achieves comparable or better retrieval performance compared with existing competitive baselines. The code is available in https://github.com/redirecttttt/HSS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When acquiring semantic information of a question, we extract topics and cluster its positive. Because most questions are no more than 10 words, with limited information.

References

  1. Baudiš, P., Šedivý, J.: Modeling of the question answering task in the YodaQA system. In: Mothe, J., et al. (eds.) CLEF 2015. LNCS, vol. 9283, pp. 222–228. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24027-5_20

    Chapter  Google Scholar 

  2. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1533–1544 (2013)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3(Jan), 993–1022 (2003)

    Google Scholar 

  4. Dolan, W., Quirk, C., Brockett, C., Dolan, B.: Unsupervised construction of large paraphrase corpora: exploiting massively parallel news sources (2004)

    Google Scholar 

  5. Gillick, D., et al.: Learning dense representations for entity retrieval. In: Proceedings of the 23rd Conference on Computational Natural Language Learning, pp. 528–537 (2019)

    Google Scholar 

  6. Hofstätter, S., Lin, S.C., Yang, J.H., Lin, J., Hanbury, A.: Efficiently teaching an effective dense retriever with balanced topic aware sampling. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 113–122 (2021)

    Google Scholar 

  7. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 7(3), 535–547 (2019)

    Article  Google Scholar 

  8. Joshi, M., Choi, E., Weld, D.S., Zettlemoyer, L.: Triviaqa: a large scale distantly supervised challenge dataset for reading comprehension. In: Proceedings of the 55th Meeting of the Association for Computational Linguistics, pp. 1601–1611 (2017)

    Google Scholar 

  9. Karpukhin, V., et al.: Dense passage retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pp. 6769–6781 (2020)

    Google Scholar 

  10. Kulis, B., et al.: Metric learning: a survey. Found. Trends® Mach. Learn. 5(4), 287–364 (2013)

    Google Scholar 

  11. Kwiatkowski, T., et al.: Natural questions: a benchmark for question answering research. Trans. Assoc. Comput. Linguist. 7, 453–466 (2019)

    Article  Google Scholar 

  12. Lee, K., Chang, M.W., Toutanova, K.: Latent retrieval for weakly supervised open domain question answering. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 6086–6096 (2019)

    Google Scholar 

  13. Li, H., Xu, J., et al.: Semantic matching in search. Found. Trends® Inf. Retrieval 7(5), 343–469 (2014)

    Google Scholar 

  14. Liu, Y., Hashimoto, K., Zhou, Y., Yavuz, S., Xiong, C., Philip, S.Y.: Dense hierarchical retrieval for open-domain question answering. In: Findings of the Association for Computational Linguistics: EMNLP 2021, pp. 188–200 (2021)

    Google Scholar 

  15. Marelli, M., Menini, S., Baroni, M., Bentivogli, L., Bernardi, R., Zamparelli, R.: A sick cure for the evaluation of compositional distributional semantic models. In: Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), pp. 216–223 (2014)

    Google Scholar 

  16. Ren, R., et al.: A thorough examination on zero-shot dense retrieval. arXiv preprint arXiv:2204.12755 (2022)

  17. Sciavolino, C., Zhong, Z., Lee, J., Chen, D.: Simple entity-centric questions challenge dense retrievers. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 6138–6148 (2021)

    Google Scholar 

  18. Xuan, H., Stylianou, A., Liu, X., Pless, R.: Hard negative examples are hard, but useful. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 126–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_8

    Chapter  Google Scholar 

  19. Yih, W.T., Toutanova, K., Platt, J.C., Meek, C.: Learning discriminative projections for text similarity measures. In: Proceedings of the 15th Conference on Computational Natural Language Learning, pp. 247–256 (2011)

    Google Scholar 

  20. Zhan, J., Mao, J., Liu, Y., Guo, J., Zhang, M., Ma, S.: Optimizing dense retrieval model training with hard negatives. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1503–1512 (2021)

    Google Scholar 

  21. Zhang, D., et al.: Supporting clustering with contrastive learning. In: NAACL-HLT (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, X., Liu, F., Gai, S., Huang, Z., Hu, M., Wang, A. (2023). HSS: A Hierarchical Semantic Similarity Hard Negative Sampling Method for Dense Retrievers. In: Dang-Nguyen, DT., et al. MultiMedia Modeling. MMM 2023. Lecture Notes in Computer Science, vol 13834. Springer, Cham. https://doi.org/10.1007/978-3-031-27818-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-27818-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-27817-4

  • Online ISBN: 978-3-031-27818-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics