Abstract
The present paper proposes a new method to augment the potentiality of components in neural networks. The basic hypothesis is that all components should have equal potentiality (equi-potentiality) to be used for learning. This equi-potentiality of components has implicitly played critical roles in improving multi-layered neural networks. We introduce here the total potentiality and relative potentiality for each hidden layer, and we try to force networks to increase the potentiality as much as possible to realize the equi-potentiality. In addition, the potentiality augmentation is repeated at any time the potentiality tends to decrease, which is used to increase the chance for any components to be used as equally as possible. We applied the method to the bankruptcy data set. By keeping the equi-potentiality of components by repeating the process of potentiality augmentation and reduction, we could see improved generalization. Then, by considering all possible representations by the repeated potentiality augmentation, we can interpret which inputs can contribute to the final performance of networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
References
Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. Cogn. Sci. 9, 75–112 (1985)
Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995). https://doi.org/10.1007/978-3-642-97610-0
Himberg, J.: A SOM based cluster visualization and its application for false colouring. In: Proceedings of the International Joint Conference on Neural Networks, pp. 69–74 (2000)
Bogdan, M., Rosenstiel, W.: Detection of cluster in self-organizing maps for controlling a prostheses using nerve signals. In 9th European Symposium on Artificial Neural Networks. ESANN 2001. Proceedings. D-Facto, Evere, Belgium, pp. 131–136 (2001)
Yin, H.: Visom-a novel method for multivariate data projection and structure visualization. IEEE Trans. Neural Networks 13(1), 237–243 (2002)
Brugger, D., Bogdan, M., Rosenstiel, W.: Automatic cluster detection in Kohonen’s Som. IEEE Trans. Neural Networks 19(3), 442–459 (2008)
Xu, L., Xu, Y., Chow, T.W.S.: Polsom: a new method for multidimensional data visualization. Pattern Recogn. 43(4), 1668–1675 (2010)
Xu, L., Xu, Y., Chow, T.W.S.: PolSOM-a new method for multidimentional data visualization. Pattern Recogn. 43, 1668–1675 (2010)
Linsker, R.: Self-organization in a perceptual network. Computer 21(3), 105–117 (1988)
DeSieno, D.: Adding a conscience to competitive learning. In: IEEE international Conference on Neural Networks, vol. 1, pp. 117–124. Institute of Electrical and Electronics Engineers, New York (1988)
Fritzke, B.: Vector quantization with a growing and splitting elastic net. In: Gielen, S., Kappen, B. (eds.) ICANN 1993, pp. 580–585. Springer, London (1993). https://doi.org/10.1007/978-1-4471-2063-6_161
Fritzke, B.: Automatic construction of radial basis function networks with the growing neural gas model and its relevance for fuzzy logic. In: Applied Computing 1996: Proceedings of the 1996 ACM Symposium on Applied Computing, Philadelphia, pp. 624–627. ACM (1996)
Choy, C.S., Siu, W.: A class of competitive learning models which avoids neuron underutilization problem. IEEE Trans. Neural Networks 9(6), 1258–1269 (1998)
Van Hulle, M.M.: Faithful representations with topographic maps. Neural Netw. 12(6), 803–823 (1999)
Banerjee, A., Ghosh, J.: Frequency-sensitive competitive learning for scalable balanced clustering on high-dimensional hyperspheres. IEEE Trans. Neural Networks 15(3), 702–719 (2004)
Van Hulle, M.M.: Entropy-based kernel modeling for topographic map formation. IEEE Trans. Neural Networks 15(4), 850–858 (2004)
Linsker, R.: Self-organization in a perceptual network. Computer 21, 105–117 (1988)
Linsker, R.: How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Comput. 1(3), 402–411 (1989)
Linsker, R.: Local synaptic learning rules suffice to maximize mutual information in a linear network. Neural Comput. 4(5), 691–702 (1992)
Torkkola, K.: Feature extraction by non-parametric mutual information maximization. J. Mach. Learn. Res. 3, 1415–1438 (2003)
Leiva-Murillo, J.M., Artés-Rodríguez, A.: Maximization of mutual information for supervised linear feature extraction. IEEE Trans. Neural Networks 18(5), 1433–1441 (2007)
Van Hulle, M.M.: The formation of topographic maps that maximize the average mutual information of the output responses to noiseless input signals. Neural Comput. 9(3), 595–606 (1997)
Principe, J.C.: Information Theoretic Learning: Renyi’s Entropy and Kernel Perspectives. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-1570-2
Moody, J., Hanson, S., Krogh, A., Hertz, J.A.: A simple weight decay can improve generalization. Adv. Neural. Inf. Process. Syst. 4, 950–957 (1995)
Kukačka, J., Golkov, V., Cremers, D.: Regularization for deep learning: a taxonomy. arXiv preprint arXiv:1710.10686 (2017)
Goodfellow, I., Bengio, Y., Courville, A.: Regularization for deep learning. Deep Learn. 216–261 (2016)
Wu, C., Gales, M.J.F., Ragni, A., Karanasou, P., Sim, K.C.: Improving interpretability and regularization in deep learning. IEEE/ACM Trans. Audio Speech Language Process. 26(2), 256–265 (2017)
Fan, F.-L., Xiong, J., Li, M., Wang, G.: On interpretability of artificial neural networks: a survey. IEEE Trans. Radiat. Plasma Med. Sci. 5, 741–760 (2021)
X. Ma, et al.: Sanity checks for lottery tickets: does your winning ticket really win the jackpot? In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Bai, Y., Wang, H., Tao, Z., Li, K., Fu, Y.: Dual lottery ticket hypothesis. arXiv preprint arXiv:2203.04248 (2022)
da Cunha, A., Natale, E., Viennot, L.: Proving the strong lottery ticket hypothesis for convolutional neural networks. In: International Conference on Learning Representations (2022)
Chen, X., Cheng, Y., Wang, S., Gan, Z., Liu, J., Wang, Z.: The elastic lottery ticket hypothesis. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Malach, E., Yehudai, G., Shalev-Schwartz, S., Shamir, O.: Proving the lottery ticket hypothesis: pruning is all you need. In: International Conference on Machine Learning, pp. 6682–6691. PMLR (2020)
Frankle, J., Dziugaite, G.K., Roy, D., Carbin, M.: Linear mode connectivity and the lottery ticket hypothesis. In: International Conference on Machine Learning, pp. 3259–3269. PMLR (2020)
Frankle, J., Dziugaite, G.K., Roy, D.M., Carbin, M.: Stabilizing the lottery ticket hypothesis. arXiv preprint arXiv:1903.01611 (2019)
Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018)
Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a right to explanation. arXiv preprint arXiv:1606.08813 (2016)
Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)
Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1(5), 206–215 (2019)
Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48(1), 137–141 (2020)
Weidele, D.K.I., et al.: opening the blackbox of automated artificial intelligence with conditional parallel coordinates. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 308–312 (2020)
Pintelas, E., Livieris, I.E., Pintelas, P.: A grey-box ensemble model exploiting black-box accuracy and white-box intrinsic interpretability. Algorithms 13(1), 17 (2020)
Nguyen, A., Yosinski, J., Clune, J.: Understanding neural networks via feature visualization: a survey. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 55–76. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_4
Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing higher-layer features of a deep network. University of Montreal, 1341 (2009)
Nguyen, A., Clune, J., Bengio, Y., Dosovitskiy, A., Yosinski, J.: Plug & play generative networks: Conditional iterative generation of images in latent space. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4467–4477 (2017)
Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)
Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems, pp. 3387–3395 (2016)
van den Oord,A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759 (2016)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 (2013)
Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)
Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., MÞller, K.-R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)
Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)
Sundararajan, M., Taly, A., Yan., Q.: Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365 (2017)
Lapuschkin, S., Binder, A., Montavon, G., Muller, K.-R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2912–2920 (2016)
Arbabzadah, F., Montavon, G., Müller, K.-R., Samek, W.: Identifying individual facial expressions by deconstructing a neural network. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 344–354. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_28
Sturm, I., Lapuschkin, S., Samek, W., Müller, K.-R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)
Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-Wise Relevance Propagation for Neural Networks with Local Renormalization Layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8
Shimizu, K.: Multivariate Analysis (2009). (in Japanese), Nikkan Kogyo Shinbun
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kamimura, R. (2023). Repeated Potentiality Augmentation for Multi-layered Neural Networks. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-28073-3_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-28073-3_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-28072-6
Online ISBN: 978-3-031-28073-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)