Skip to main content

Design and Virtualization of an Automated System with Hardware in the Loop for the Virtualized Water Bottling Process in a Unity Environment

  • Conference paper
  • First Online:
Advances in Information and Communication (FICC 2023)

Abstract

This article presents the design and virtualization of a water bottle packing plant in the Unity software, with the implementation of an automated system with human-machine interface - supervision, control and data acquisition (HMI) for the water bottling process, where, through the use of SolidWorks software, the bottling plant was created and exported to an fbx file so that it can be read by Unity, so that, through the Logo Soft software, the inputs and outputs of the plant can be programmed and this is controlled through the use of a Siemens Logo using the Modbus network as the open communication protocol to obtain the operation of a bottling plant in the industry in a virtual scenario, this being an easy to operate module of low cost where master information will be provided to the computer to send the slave, which will be the Arduino together with the PLC, resulting in a friendly, intuitive and realistic environment of a water bottling plant, in addition to presenting an alternative for students and industries in order to have an interaction with the plant, know its operation and possible failures that it would have without the need for an economic or unnecessary expense.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Piccarozzi, M.; Aquilani, B.; Gatti, C. Industry 4.0 in management studies: a systematic literature review. Sustainability 10, 3821 (2018). https://doi.org/10.3390/su10103821

  2. Machado, C.G., Winroth, M.P., Ribeiro da Silva, E.H.D.: Sustainable manufacturing in industry 4.0: an emerging research agenda. Int. J. Prod. Res. 58, 1462–1484 (2020). https://doi.org/10.1080/00207543.2019.1652777

  3. Coe, N.M., Yeung, H.W.: Global production networks: mapping recent conceptual developments. J. Econ. Geogr. 19, 775–801 (2019). https://doi.org/10.1093/jeg/lbz018

    Article  Google Scholar 

  4. Whysall, Z., Owtram, M., Brittain, S.: The new talent management challenges of industry 4.0. J. Manage. Dev. 38, 118–129 (2019). https://doi.org/10.1108/JMD-06-2018-0181

  5. Andaluz, V.H., et al.: Unity3D-MatLab simulator in real time for robotics applications. In: De Paolis, L.T., Mongelli, A. (eds.) AVR 2016. LNCS, vol. 9768, pp. 246–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40621-3_19

    Chapter  Google Scholar 

  6. Ortiz, J.S., Guevara, B.S., Espinosa, E.G., Andaluz, V.H.: Smart University Immersive Virtual Learning. In: Iberian Conference on Information Systems and Technologies, CISTI 2020, June 2020

    Google Scholar 

  7. Carvajal, C.P., Méndez, M.G., Torres, D.C., Terán, C., Arteaga, O.B., Andaluz, V.H.: Autonomous and tele-operated navigation of aerial manipulator robots in digitalized virtual environments. In: De Paolis, L.T., Bourdot, P., (eds.) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2018. Lecture Notes in Computer Science, vol. 10851, pp. 496–515. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_36

  8. Borangiu, T., Trentesaux, D., Thomas, A., Leitão, P., Barata, J.: Digital transformation of manufacturing through cloud services and resource virtualization. Comput. Ind. 108, 150–162 (2019). https://doi.org/10.1016/j.compind.2019.01.006

    Article  Google Scholar 

  9. Walia, J.S., Hämmäinen, H., Kilkki, K., Flinck, H., Yrjölä, S., Matinmikko-Blue, M.: A virtualization infrastructure cost model for 5G network slice provisioning in a smart factory. J. Sens. Actuator Netw. 10, 51 (2021). https://doi.org/10.3390/jsan10030051

    Article  Google Scholar 

  10. Wang, Y., Feng, X., Chen, Y., Zhou, L., Zhu, Y., Wu, J.: A Dual detection method for Siemens inverter motor Modbus RTU attack. J. Comput. Commun. 9, 91–108 (2021). https://doi.org/10.4236/jcc.2021.97008

    Article  Google Scholar 

  11. Pan, X., Wang, Z., Sun, Y.: Review of PLC security issues in industrial control system. J. Cybersecur. 2, 69–83 (2020). https://doi.org/10.32604/jcs.2020.010045

    Article  Google Scholar 

  12. Liu, I.-H., Lai, C.-C., Li, J.-S., Wu, C.-C., Li, C.-F., Liu, C.-G.: An emulation mechanism for PLC communication features. J. Robot. Netw. Artif. Life 8, 175–179 (2021). https://doi.org/10.2991/jrnal.k.210922.005

    Article  Google Scholar 

  13. Pogo, S.I., Granizo, J., Andaluz, V.H., Varela-Aldas, J.: Virtual environment for the mashing and boiling process in craft beer production. In: Yang, XS., Sherratt, S., Dey, N., Joshi, A. (eds.) Proceedings of Seventh International Congress on Information and Communication Technology. Lecture Notes in Networks and Systems, vol. 465, pp. 419–435. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-2397-5_40

  14. Santo, L.F.; Tandalla, R.M.; Andaluz, H. Collaborative control of mobile manipulator robots through the hardware-in-the-loop technique. In: Yang, X.-S., Sherratt, S., Dey, N., Joshi, A., (eds.) Proceedings of the Proceedings of Sixth International Congress on Information and Communication Technology, Springer, Singapore, LNCS, vol. 236, pp. 643–656 (2022)

    Google Scholar 

  15. Jacome, E.M., Toaquiza, J.F., Mullo, G.M., Andaluz, V.H., Varela-Aldás, J.: Virtual System for industrial processes: distillation towers. In: De Paolis, L.T., Arpaia, P., Bourdot, P., (eds.) Proceedings of the Augmented Reality, Virtual Reality, and Computer Graphics; Springer, Cham, vol. 12980, pp. 670–679 (2021). https://doi.org/10.1007/978-3-030-87595-4_48

  16. Drake, K.P., Fuselier, E.J., Wright, G.B.: Implicit surface reconstruction with a curl-free radial basis function partition of unity method. SIAM J. Sci. Comput. 44, A3018–A3040 (2022). https://doi.org/10.1137/22M1474485

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Universidad de las Fuerzas Armadas ESPE: Universidad Tecnológica Indoamérica; SISAu Research Group, and the Research Group ARSI, for the support for the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jessica S. Ortiz or José Varela-Aldás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pico, L., Marroquín, F., Ortiz, J.S., Varela-Aldás, J. (2023). Design and Virtualization of an Automated System with Hardware in the Loop for the Virtualized Water Bottling Process in a Unity Environment. In: Arai, K. (eds) Advances in Information and Communication. FICC 2023. Lecture Notes in Networks and Systems, vol 651. Springer, Cham. https://doi.org/10.1007/978-3-031-28076-4_41

Download citation

Publish with us

Policies and ethics