Skip to main content

Design and Analysis of Two Efficient Socialist Millionaires’ Protocols for Privacy Protection

  • Conference paper
  • First Online:
Smart Computing and Communication (SmartCom 2022)

Abstract

Yao's Millionaires’ problem has led to the emergence of secure multi-party computation. As an important tool for privacy protection in cryptography, secure multi-party computation has attracted more and more scholars to study it. The socialist millionaires’ problem is the basic module of the secure multiparty computing protocol. Designing secure and efficient solutions for the socialist millionaires’ problem can be effectively applied to the secret ballot, electronic auction, and so on. Based on the vector encoding method, the Paillier encryption scheme, and the Goldwasser-Micali encryption scheme, two efficient socialist millionaires’ protocols are proposed and the protocols are analyzed. The correctness analysis, security proof, performance analysis, and experimental simulation show that the efficiency of the two protocols is superior to the existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao. A.: Protocols for secure computations. In: 23th IEEE Symposium on Foundations of Computer Science, Los Alamitos, CA, pp. 160–164 (1982)

    Google Scholar 

  2. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game, In: ACM Conference on Theory of Computing. Piscataway, pp. 218–229 (1987)

    Google Scholar 

  3. Goldwasser, S.: Multi-party computations: past and present. In: ACM Symposium on Principles of Distributed Computing, ACM Press, New York, pp. 1–6 (1997)

    Google Scholar 

  4. Goldreich, O.: The Fundamental of Cryptography: Basic Applications. Cambridge University Press, London (2004)

    Book  MATH  Google Scholar 

  5. Qiu, H., Qiu, M., Lu, Z.: Selective encryption on ECG data in body sensor network based on supervised machine learning. Inf. Fusion 55, 59–67 (2020)

    Google Scholar 

  6. Qiu, M., Zhang, L., et al.: Security-aware optimization for ubiquitous computing systems with SEAT graph approach. J. Com. Sys. Sci. 79(5), 518–529 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Xia, F., Hao, R., et al.: Adaptive GTS allocation in IEEE 802.15. 4 for real-time wireless sensor networks. J. Syst. Arch. 59(10), 1231–1242 (2013)a

    Google Scholar 

  8. Kumar, P., Kumar, R., et al.: PPSF: a privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities. IEEE Trans. Netw. Sci. Eng. 8(3), 2326–2341 (2021)

    Article  Google Scholar 

  9. Wu, C., Luo, C., et al.: A greedy deep learning method for medical disease analysis. IEEE Access 6, 20021–20030 (2018)

    Article  Google Scholar 

  10. Cheng, H., et al.: Multi-step data prediction in wireless sensor networks based on one-dimensional CNN and bidirectional LSTM. IEEE Access 7, 117883–117896 (2019)

    Article  Google Scholar 

  11. Yao, Y., Xiong, N., et al.: Privacy-preserving max/min query in two-tiered wireless sensor networks. Comput. Math. Appl. 65(9), 1318–1325 (2013)

    Article  MathSciNet  Google Scholar 

  12. Zhao, J., et al.: An effective exponential-based trust and reputation evaluation system in wireless sensor networks. IEEE Access 7, 33859–33869 (2019)

    Article  Google Scholar 

  13. Gao, Y., Xiang, X., et al.: Human action monitoring for healthcare based on deep learning. IEEE Access 6, 52277–52285 (2018)

    Article  Google Scholar 

  14. Wu, C., Ju, B., et al.: UAV autonomous target search based on deep reinforcement learning in complex disaster scene. IEEE Access 7, 117227–117245 (2019)

    Article  Google Scholar 

  15. Fu, A., Zhang, X., et al.: VFL: a verifiable federated learning with privacy-preserving for big data in industrial IoT. IEEE Trans. Indust. Inform. 18, 3316–3326 (2020)

    Google Scholar 

  16. Zhang, W., Zhu, S., Tang, J., Xiong, N.: A novel trust management scheme based on Dempster–Shafer evidence theory for malicious nodes detection in wireless sensor networks. J. Supercomput. 74(4), 1779–1801 (2018)

    Google Scholar 

  17. Chen, Y., Zhou, L., et al.: KNN-BLOCK DBSCAN: fast clustering for large-scale data, IEEE Trans. Syst. Man Cybernet. Syst. 51(6), 3939–3953 (2019)

    Google Scholar 

  18. Huang, S., Zeng, Z., Ota, K., Dong, M., Wang, T., Xiong, N.N.: An intelligent collaboration trust interconnections system for mobile information control in ubiquitous 5G networks, IEEE Trans. Netw. Sci. Eng. 8(1), 347–365 (2020)

    Google Scholar 

  19. Qiu, M., Xue, C., Shao, Z., et al.: Efficient algorithm of energy minimization for heterogeneous wireless sensor network. In: IEEE EUC, pp. 25–34 (2006)

    Google Scholar 

  20. Niu, J., et al.: Selecting proper wireless network interfaces for user experience enhancement with guaranteed probability. J. Parallel Distrib. Comput. 72(12), 1565–1575 (2012)

    Article  Google Scholar 

  21. Qiu, H., Dong, T., et al.: Adversarial attacks against network intrusion detection in IoT systems. IEEE IoT J. 8(13), 10327–10335 (2020)

    Google Scholar 

  22. Li, Y., Gai, K., et al.: Intercrossed access controls for secure financial services on multimedia big data in cloud systems. ACM Trans. Multim. Comput. Commun. Appl. 12(4) (2016)

    Google Scholar 

  23. Qiu, H., Zheng, Q., et al.: Topological graph convolutional network-based urban traffic flow and density prediction. IEEE Trans. Intell. Transp. Syst. 22, 4560–4569 (2020)

    Google Scholar 

  24. Liu, W., Luo, S., Chen, P.: A new solution to SMP based on sliding window and exchange encryption function. Comput. Eng. 33(22), 163–171 (2007)

    Google Scholar 

  25. Boudot, F., Schoenmakers, B., Traore, J.: A fair and efficient solution to the socialist millionaires. Problem. Discrete Appl. Math. 111, 23–36 (2003)

    Google Scholar 

  26. Qin, J., Zhang, Z., Feng, D., et al.: Comparisons without information leakage. J. Softw. 15(3), 421–427 (2004)

    Google Scholar 

  27. Lin, H.Y., Tzeng, W.G.: An efficient solution to the millionaires’ problem based on homomorphic encryption. In: Third International Conference on Applied Cryptography and Network Security (ACNS), pp. 456–466New York, USA (2005)

    Google Scholar 

  28. Blake, I.F., Kolesnikov, V.: Strong conditional oblivious transfer and computing on intervals. In: Advances in Cryptology-AISACRYPT 2004, pp. 515–529 (2004)

    Google Scholar 

  29. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (eds.) Advances in Cryptology — EUROCRYPT 1999. EUROCRYPT 1999, LNCS, vol. 1592, pp. 223–238. Springer, Berlin (1999). https://doi.org/10.1007/3-540-48910-X_16

  30. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China: Big Data Analysis based on Software Defined Networking Architecture, grant numbers 62177019 and F0701; NSFC, grant numbers 62271070, 72293583, and 61962009; Inner Mongolia Natural Science Foundation, grant number 2021MS06006; 2023 Inner Mongolia Young Science and Technology Talents Support Project, grant number NJYT23106; 2022 Fund Project of Central Government Guiding Local Science and Technology Development, grant number 2022ZY0024; 2022 Basic Scientific Research Project of Direct Universities of Inner Mongolia, grant number 20220101; 2022 “Western Light” Talent Training Program “Western Young Scholars” Project; the 14th Five Year Plan of Education and Science of Inner Mongolia, grant number NGJGH2021167; 2023 Open Project of the State Key Laboratory of Network and Exchange Technology; 2022 Inner Mongolia Postgraduate Education and Teaching Reform Project, grant number 20220213; the 2022 Ministry of Education Central and Western China Young Backbone Teachers and Domestic Visiting Scholars Program, grant number 2022015; Inner Mongolia Discipline Inspection and Supervision Big Data Laboratory Open Project Fund, grant number IMDBD202020; Baotou Kundulun District Science and Technology Plan Project, grant number YF2020013; Inner Mongolia Science and Technology Major Project, grant number 2019ZD025.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X., Liu, X., Tu, X., Xiong, N. (2023). Design and Analysis of Two Efficient Socialist Millionaires’ Protocols for Privacy Protection. In: Qiu, M., Lu, Z., Zhang, C. (eds) Smart Computing and Communication. SmartCom 2022. Lecture Notes in Computer Science, vol 13828. Springer, Cham. https://doi.org/10.1007/978-3-031-28124-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-28124-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-28123-5

  • Online ISBN: 978-3-031-28124-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics